
Hot Under the Hood: An Analysis of Ambient Temperature Impact
on Heterogeneous Edge Platforms

Amirhossein Ahmadi
amirhmi@ece.ubc.ca

University of British Columbia

Hazem A. Abdelhafez
hazem@ece.ubc.ca

University of British Columbia

Shashwat Jaiswal
shashwatj@iitbhilai.ac.in

Indian Institute of Technology Bhilai

Karthik Pattabiraman
karthikp@ece.ubc.ca

University of British Columbia

Matei Ripeanu
matei@ece.ubc.ca

University of British Columbia

ABSTRACT
Applications deployed at the edge are often subject to critical Qual-
ity of Service (QoS) objectives, such as meeting deadlines while
optimizing for energy consumption. To design and operate middle-
ware that satisfies these QoS objectives, it is crucial to understand
the runtime and power consumption characteristics of the edge
platform. However, while edge platforms are frequently deployed
in environments where ambient factors cannot be controlled, most
characterizations are performed without considering environmen-
tal factors. We characterize the impact of ambient temperature on
the power consumption and runtime of machine learning inference
applications running on a popular edge platform, the NVIDIA Jet-
son TX2. Our rigorous data collection and statistical methodology
reveals a sizeable ambient temperature impact on power consump-
tion (about 20% on average, and up to 40% on some workloads) and
a moderate impact on runtime (up to 5%).

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Performance and power variation, Edge computing, Jetson TX2
ACM Reference Format:
Amirhossein Ahmadi, Hazem A. Abdelhafez, Shashwat Jaiswal, Karthik
Pattabiraman, and Matei Ripeanu. 2023. Hot Under the Hood: An Analysis
of Ambient Temperature Impact on Heterogeneous Edge Platforms. In 6th
International Workshop on Edge Systems, Analytics and Networking (EdgeSys
’23), May 8, 2023, Rome, Italy. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3578354.3592868

1 INTRODUCTION
Context. Today’s heterogeneous edge platforms, such as those from
the NVIDIA Jetson family, provide an efficient solution for execut-
ing compute- and memory-intensive applications (e.g., machine
learning inference) at the edge. These applications are often subject

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0082-8/23/05. . . $15.00
https://doi.org/10.1145/3578354.3592868

to Quality of Service (QoS) objectives, such as energy limitations or
task deadlines, that must bemet to avoid serious consequences, such
as a drone crashing due to a depleted battery, or an autonomous ve-
hicle having an accident due to missing a deadline while analyzing
video captures of its environment.

To meet the QoS objectives of edge applications, it is crucial to
characterize the edge platform’s runtime and power consumption
[12]. Accurate characterization is equally important to support de-
cisions to tune the frequency of the various processing units or
the memory controller with the same goal of meeting QoS con-
straints. Such characterizations, however, typically do not consider
the impact of environmental factors such as temperature [11].

Embedded edge devices are often deployed in uncontrolled, harsh
environments where they are exposed to a range of ambient temper-
atures that can range from as low as -40°C in cold storage facilities
to as high as 70°C in desert environments when directly exposed to
the sun [8]. As the ambient temperature increases, the power con-
sumption of the components on the board can also increase due to a
multitude of factors such as increased current leakage, and internal
elements’ resistance. Additionally, elevated ambient temperatures
can also cause a reduction in the reliability and performance of the
board (see §2).
Objective. The goal of this paper is to determine the extent to which
ambient temperature impacts the power consumption and application
runtime on heterogeneous edge platforms.
Challenges. There are two main challenges. The first challenge is
ensuring that the observed variations in power and runtime can
be attributed to temperature changes, rather than to confounding
factors e.g., background tasks performed by the operating system,
runtime variability caused by differences in the application’s mem-
ory layout with each execution, or measurement inaccuracies - both
in hardware tools used to monitor power consumption and software
tools used to measure runtime. To overcome this challenge, we use
a rigorous experimental setup and data collection methodology to
minimize the effects of factors other than temperature, on runtime
and power consumption.

The second challenge is the non-normal distribution of runtime
and power data, which precludes the use of parametric data analysis
and summarization techniques, such as mean, standard deviation,
and coefficient of variation. To overcome this challenge, we use non-
parametric statistical techniques (i.e., techniques that do not make
assumptions about the underlying distributions). These techniques

1

https://doi.org/10.1145/3578354.3592868
https://doi.org/10.1145/3578354.3592868
https://doi.org/10.1145/3578354.3592868

EdgeSys ’23, May 8, 2023, Rome, Italy Ahmadi et al.

(i) use non-parametric summarizing metrics: e.g., median and inter-
quartile intervals, and (ii) vary the amount of data to collect based
on the variability observed in the data during its collection.
Contributions:

■ Methodology (§3). The primary contribution of this study is a
methodology for characterizing the impact of ambient tempera-
ture on runtime and power consumption on heterogeneous edge
platforms. To overcome the above two challenges, we: (i) employ
a rigorous experimental setup and data collection methodology,
and (ii) use non-parametric statistical techniques.

■ Characterization (§5).Weuse thismethodology and a temperature-
controlled chamber to characterize the impact of ambient
temperature on runtime and power consumption on machine
learning (ML) inference workloads running on the NVIDIA
Jetson TX2 heterogeneous edge platform. We place the board
inside the temperature-controlled chamber and change the
ambient temperature from 25 to 70ºC in a systematic manner
(§4). We make four main observations. First, we observe that
power and runtime data are not normally distributed. Second,
the impact of the ambient temperature on power consumption is
sizeable (about 20% on average, and up to 40% on some workloads
and frequency configurations). Third, between 30% and 50%
of the increase in power consumption is linked to an increase
in dynamic power at higher temperatures. Finally, there is a
moderate impact of ambient temperature on runtime (up to 5%
depending on workload and frequency configuration).

Implications: There are two implications of this study. First, our
findings add to an increasing body of knowledge [4] that indicates
that non-parametric statistical techniques should be the default
choice when characterizing computing systems’ performance and
power consumption (i.e., techniques that assume normality should
be used only after verifying that the data collectedmatches a normal
distribution).

Secondly, and more importantly, our findings indicate that when
modeling for power, energy (and, depending on the desired accu-
racy, runtime) of edge applications, one should take ambient tem-
perature into account. One area where such models are employed
is to drive the choice of the frequency configuration of the board’s
processing units and memory controller to meet power or runtime
constraints or minimization objectives (e.g., NeuOS[1], PredJoule
[9], POET [5], Mcdnn [10], MASA [2], MOSAIC [6]). Because these
solutions are based on models that are temperature agnostic, they
may lead to configurations that either violate power/runtime con-
straints or are sub-optimal (as our preliminary experiments in §6
suggest).

2 BACKGROUND
Temperature changes can affect integrated circuits’ power con-
sumption, reliability, and performance [15, 16].

Power. Integrated circuits consumemore power at higher temper-
atures due to a variety of factors, the main one being the increased
resistance of the circuitry. Additionally, as temperature increases,
the leakage current in the transistors also increases. Finally, as
temperature increases, the capacitance of the circuitry may also
increase, which in turn leads to increased power consumption.

Reliability.At higher temperatures, thermal noise also increases,
which can cause errors in data transmission and processing. To
prevent these errors, integrated circuits may not only need to use
more power for error correction, but also their reliability and perfor-
mance may be impacted. Higher temperatures can also accelerate
the diffusion of impurities in materials, which can cause degrada-
tion and aging of the integrated circuits over time. Temperature
cycling can also lead to thermal fatigue and cracking of materials.

Performance.While we find that temperature has a moderate
impact on performance (up to ±5% with fixed clock frequency and
without any throttling), there is limited information in the litera-
ture on the underlying mechanisms that may create a performance-
temperature relationship. Among the possible causes are: (i) the
impact of more frequent error correction on memory or data trans-
mission needed to recover themore frequent faults at higher temper-
atures (mentioned above); (ii) slight deviations in clock frequency
with changes in temperature; and (iii) decrease in the mobility of
charge carriers in semiconductors as temperature increases, which
can affect the speed of integrated circuits.

3 METHODOLOGY
This section presents the key elements of our methodology. We
start by describing the measures taken to limit noise in our environ-
ment (e.g., possibly introduced by measurement noise, scheduling
decisions, and interference with OS tasks or other applications)
(§3.1). We then present the results of our preliminary experiments
that indicate that the collected data does not follow a Gaussian
distribution. Therefore, we adopt an approach that leverages non-
parametric statistical techniques that do not make any assumptions
about the distribution of the underlying data, during data collection
(§3.2) and analysis (§5). Key to this technique is the fact that the
amount of data collected is itself data-dependent: we collect enough
data until the estimate for the median fits in the desired confidence
range (e.g., ±1% of the median) with 99% confidence.

3.1 Environment setup
To collect the benchmarks’ runtime and power consumption data,
we use a data collection methodology that reduces measurement
bias (i.e., noise) such as interference with the OS or background
applications. To this end, we do the following:

■ Core Isolation and Thread Affinity. For any benchmark, we isolate
four out of the six CPU cores on the Jetson TX2 to run bench-
mark. We also schedule the benchmark threads to the four cores
and prevent the OS from migrating them during the character-
ization experiments. This ensures that the benchmarks run on
dedicated CPU cores, without significant interference from the
OS scheduler, or other applications.

■ Concurrent User-Space Applications. We disable the GUI along
with several non-essential services (e.g., containers service, cal-
endar, system upgrade) to reduce the impact of other software
components on the collected data.

■ I/O Operations and Remote Access. We prevent remote access into
the board during the characterization runs, and schedule the IO
operations (e.g., loading data, saving results, progress notifier)
to occur after the characterization data is collected. This ensures

2

Hot Under the Hood: An Analysis of Ambient Temperature Impact on Heterogeneous Edge Platforms EdgeSys ’23, May 8, 2023, Rome, Italy

that no network traffic or disk I/O operations will affect the
benchmark results.

■ PyTorch-specific Measures. We turn off PyTorch gradient com-
putations (as we focus on the inference task) and turn on JIT
(Just-in-Time) optimizations. This enables performance optimiza-
tions (e.g., improved runtime, and lower memory usage) for the
target ML inference benchmarks.

3.2 Data Collection and Terminology
To collect power consumption and runtime data we:

■ Reboot the board and run the target benchmark five times to
avoid application-level and board-level cold start effects.

■ We repeatedly perform the sequence of (i) sending the input
from the CPU to the GPU, (ii) running the benchmark on the
GPU, and (iii) sending the output result from the GPU to the
CPU. We refer to this sequence as a block. We create blocks to
eliminate the overhead associated with the CUDA timer (start
and stop functions) and synchronization. We determine the size
of each block based on two criteria: First, it must have at least 100
iterations, and, second, the CUDA runtime and synchronization
overhead should be less than 0.1% of the block runtime. We
determine the block size after the warm-up iterations.

Terminology: We define a runtime observation as the average
benchmark runtime during a block, and a power observation as the
power reading obtained from the onboard power monitors during
the block execution. A collection of observations is a sample.
Testing for Normality of the Data. We use the two most pow-
erful Normality tests [7]: Shapiro-Wilk, and Anderson-Darling. In
both tests, the null hypothesis is that the input data sample belongs
to the Gaussian distribution. We apply both tests to the runtime
and power samples we collect.

Table 1 summarizes the results: at the 99% confidence level, both
tests reject the null hypothesis for the majority of the data sam-
ples for both runtime and power consumption. Hence, there is no
sufficient evidence to consider the collected data as Normally dis-
tributed, which leads us to use non-parametric statistical techniques
to analyze the data and draw accurate conclusions.

Non-Parametric Statistical Technique to Estimate theMedian.
A common practice in empirical-based data analysis is to assume
that the data belongs to a specific parametric distribution (usually
Gaussian). This assumption makes it possible to use parametric data
analysis and summarization metrics (e.g., mean, standard deviation,
coefficient of variation, t-test) and limits the number of observa-
tions needed to estimate these metrics for a desired confidence.
However, since our data is not normally distributed, we use non-
parametric statistical analysis metrics (e.g., median, inter-quartile
range, quartile-based coefficient of variation) and determine when
to stop collecting data based on the values observed during collec-
tion (similar to [4]).

We define two stop criteria for collecting observations for a
sample: (i) the sample must contain at least 50 observations, and
(ii) the Relative Margin of Error (RME) for the median estimation
is ≤ 0.5% with a confidence level of 99%.

Thus far, collecting one sample corresponds to one reboot of the
node. This works well for power. However, similar to Mytkowicz et

Table 1: Shapiro-Wilk and Anderson-Darling normality tests’ re-
sults. Each row depicts the percentage of samples for a benchmark,
for which the null hypothesis (i.e., that the data is normally dis-
tributed) can be rejected at 99% confidence level. We run the tests on
two boards: NVIDIA Jetson TX2 and AGX boards. For TX2, for each
workload, each cell aggregates experiments at medium and high fre-
quencies each at 25 and 70ºC (see $4 for details). For AGX, each cell
aggregates 455 unique frequency configurations combinations for
the CPU, GPU, and memory controller all at ambient temperature
for a total of 6370 samples.

Runtime Power
Shapiro-Wilk Anderson-Darling Shapiro-Wilk Anderson-DarlingBenchmark

99% 99% 99% 99%
Squeezenet 100 100 100 100
Mobilenetv2 100 50 100 100
Alexnet 50 50 100 100
Googlenet 100 100 100 100
Inception3 100 100 100 100
Resnet 100 100 100 100
Shufflenetv2 100 25 100 100
GeoMean: TX2 91.94 67.29 100 100
Squeezenet 78.60 73.72 89.34 99.98
Mobilenetv2 88.07 85.15 88.78 100
Alexnet 86.72 80.66 89.36 100
Googlenet 72.75 66.48 90.53 100
Inception3 68.93 62.10 92.97 100
Resnet 87.60 84.00 91.24 100
Shufflenetv2 89.45 85.98 84.62 100
GeoMean: AGX 82.60 76.33 89.51 100

al. [13], we observe that there are differences in runtime between
different boot states. These are due to differences in the memory
layouts between different re-boots [3, 13]. Since characterizing a
single boot state is not enough, we aim to estimate the median run-
time across different reboot states and use the same non-parametric
technique as above. Therefore, for runtime, after collecting a sam-
ple, we use its median as an observation corresponding to one boot
state1. We then continue to gather such observations (i.e., one per
reboot) and repeat this process until we can accurately estimate the
median with RME ≤ 0.5% and a confidence level of 99%. This way,
the task of gathering runtime data is time-consuming as a large
number of reboots and board warm-ups are needed. On average,
for one workload in one frequency setting (i.e., fixed temperature
and frequency configuration), we collect a total of 6800 runtime
observations within 91 board reboots.

4 EXPERIMENTAL SETUP
This section presents the main elements of our experimental setup:
workload ($4.1), experimental platform ($4.2), and the temperature-
controlled chamber ($4.3).

4.1 Workload
We use pre-trained Convolutional Neural Networks (CNNs) loaded
via Torchvision v0.8 – a widely-used machine-vision package that
is compatible with the PyTorch project and provides a variety of
popular datasets, models, and image transformations for visual data
processing. To ensure compatibility with the networks, we generate
a shape-compatible input tensor for each network using randomly
generated numbers, and use this input during the inference task.We
study a total of seven classification networks: Alexnet, Googlenet,
Resnet, Mobilenetv2, Squeezenet, Shufflenetv2, and Inception3.
1We verify that these observations are not normally distributed either.

3

EdgeSys ’23, May 8, 2023, Rome, Italy Ahmadi et al.

Figure 1: Temperature-controlled chamber used.

4.2 Hardware Platform
Hardware Platform. We use the NVIDIA Jetson TX2, a hetero-
geneous edge computing platform specifically designed to accel-
erate ML applications (Table 2). Its architecture comprises a het-
erogeneous combination of low-powered ARM CPU cores and the
NVIDIA Pascal GPU, which share a unified memory module.
Frequency Configurations. The Jetson TX2, in contrast to recent
Intel and AMDmicroarchitectures where power is the predominant
resource and frequency is dynamically adjusted to fit within the
power cap, features a manual governor (i.e., userspace mode) that
grants greater control over the system’s frequency configuration. To
ensure frequency consistency throughout the experiment, we use
this userspace governor mode to set the frequency configuration of
the underlying components and ensure that it remains unchanged.

We use two frequency configuration settings dubbed (i) high
frequency with CPU at 2.03GHz, GPU at 1.3GHz, and memory at
1.86GHz, and (ii) medium frequency with CPU at 1.11GHz, GPU at
0.73GHz, and memory at 0.66GHz. We exclude the low frequency
settings, as they result in unacceptably long runtimes for most
applications.
Software Stack. We use NVIDIA Jetpack v5.0.2, which has the
latest Jetson Linux (v34.1.1) and CUDA v11.4. Our deep learning
framework is PyTorch v1.6.

Table 2: Jetson TX2’s hardware specifications.

Jetson TX2

CPU Dual-Core NVIDIA Denver 2 64-Bit CPU
Quad-Core ARM® Cortex®-A57 MPCore

GPU 256-core NVIDIA Pascal™ GPU architecture
with 256 NVIDIA CUDA cores

Memory Controller 8GB 128-bit LPDDR4 Memory
1866 MHx - 59.7 GB/s

Storage 32GB eMMC 5.1

Power, Runtime, and Temperature Monitors. To monitor the
runtime, we use CUDA event timers, specifically the CudaTimer
which is based on high-resolution onboard GPU counters. These
counters are preferable for measuring GPU operations over CPU
counters as they have lower latency and higher (sub-microsecond)
resolution.

To measure power consumption, we used the onboard Power
Measurement Unit (INA3221), which has an error of ±5%. We read
power data with a frequency of 2Hz during the experiment. The
PMU has different rails for reading the board’s components’ power.
We use the aggregation of the first four power rails as the board’s
power consumption: CPU, GPU, SOC, and memory. The PMU is
designed to operate correctly in the temperature range of our ex-
periments.

To monitor the CPU and GPU temperature, we use the onboard
sensors. The TX2 has eight thermal ’zones’, each of which provides
sensors with millidegrees Celsius sensitivity for a different compo-
nent. We monitor the temperatures of the CPU and GPU (thermal
zones 1 and 2) to ensure that their temperature did not exceed the
thermal throttling point.

4.3 Temperature-Controlled Chamber
We use a temperature-controlled chamber (Figure 1) that can main-
tain a fixed temperature (±1ºC error) within a temperature range
of 20 to 100ºC. A temperature-controlled chamber is a special-
ized environment that is used to test a product by replicating the
temperature and humidity conditions experienced by it during its
operation. The chamber uses forced air convection, to circulate air
within the testing area to maintain a stable ambient temperature.

We evaluate the performance and power consumption of the
board under varying ambient temperatures. To this end, we place
the board within the chamber and establish the desired ambient
temperature before initiating the characterization. We wait until
two conditions are met: (i) the chamber’s temperature sensor indi-
cates that the temperature has become within ±1ºC of the target
temperature, and (ii) the board’s temperature as reported by its
internal sensors is within ±3ºC of the ambient temperature.
Ambient Temperature. We use two ambient temperatures that
are significantly different: 25 and 70ºC. According to the Jetson
manual, thermal throttling on the Jetson TX2 begins at 82ºC. The
fan runs at maximum speed throughout the experiments to keep the
board’s temperature close to the ambient temperature. We ensure
that neither software nor hardware throttling occurs during the
experiment by monitoring the onboard temperature sensors.

5 CHARACTERIZATION RESULTS
We characterize the impact of ambient temperature variation on
power consumption and runtime.
Impact on Power Consumption. Figure 2 presents power con-
sumption for each workload in the high (top plot) and medium
(bottom plot) frequency settings at both low (left, grey boxplots)
and high (right) temperatures. On average, we observe a 18.49%
increase in power consumption at 70°C compared to 25°C in the
high-frequency configuration. The Shufflenetv2 workload shows
the highest increase of 27.1%. In the medium frequency setting, the
average increase in power consumption is even higher at 21.60%

4

Hot Under the Hood: An Analysis of Ambient Temperature Impact on Heterogeneous Edge Platforms EdgeSys ’23, May 8, 2023, Rome, Italy

high frequency

6

8

10

12

18.67% 18.9% 15.14% 17.79% 17.41% 14.49% 27.1%

25ºC
70ºC

Squeezenet Mobilenetv2 Alexnet Googlenet Inception3 Resnet Shufflenetv2
medium frequency

2

3

4

5

20.66% 25.21% 20.17% 24.58% 20.01% 18.75% 38.15%

25ºC
70ºC

Po
we

r c
on

su
m

pt
io

n
(w

at
t)

Figure 2: Boxplots present the distribution of measured power while executing different CNN inference workloads at 25 (left, grey boxplots)
and 70ºC (right) in the high (top plot) and medium (bottom) frequency configurations. Each boxplot presents the median, the top and bottom
quartiles, and 5th/95th percentiles are shown by whiskers. Outliers were omitted for clarity. The differences (as %-tiles) between the medians
for each model are shown on the x-axis. Lower values are better.

on average, with the Shufflenetv2 workload again showing the
maximum increase of 38.15%.
Impact on Runtime. The data collection process for runtime is
time-consuming (see §3.2). Given the considerable time invest-
ment (i.e., several days) required to gather data, particularly in
the medium frequency configuration where runs take longer, we
have opted to focus our attention on the high frequency only2. Fig-
ure 3 shows that there is a noticeable increase in median runtime
for all models in the high frequency setting at 70ºC compared to
25ºC. We observe an average increase of 2.59% in median runtime,
with a maximum of 5.15% for Alexnet in the high temperature. We
omit Inception3 (which had a runtime exceeding 55ms) from the
plot for visual clarity, but our analysis of this model also showed a
similar increase (1.7%) in runtime.

6 SUMMARY AND DISCUSSION
Summary. Our results highlight the importance of taking ambient
temperature into account when characterizing heterogeneous edge
platforms. Our study indicates that raising the ambient tempera-
ture from office-like conditions (25◦C) to direct sun exposure in a
hot climate (70◦C) has a significant impact on power consumption:
about 20% on average across our machine learning inference bench-
marks and frequency configurations and up to 38% in some cases.
Under the same conditions, we also find a moderate (yet surprising)
impact on runtime (up to 5%).
Discussion. The rest of this section continues by discussing a
number of interrelated topics:
[D1] What are the mechanisms that generate the observed impact
of ambient temperature on power consumption? This is a known

2The data we collected on only a few of the benchmarks in medium frequency supports
the conclusions we present here.

Squeezenet Mobilenetv2 Alexnet Googlenet Resnet Shufflenetv2
12

13

14

15

16

17

Ru
nt

im
e

(m
s)

1.42% 1.71% 5.15% 1.63% 2.55% 3.05%

25ºC
70ºC

Figure 3: Boxplots present the distribution of the medians of the
collected runtime samples for different CNN inference workloads
at 25 (left, grey boxplots) and 70ºC (right) in the high frequency
configurations. Boxplots have the same meaning as in Figure 2. The
differences (%) between the medians for each model are shown on
the x-axis. Lower values are better.

phenomenon (see §2). The novelty our characterization brings is
that it precisely quantifies the impact and demonstrates that it is
sizeable.

We performed an additional experiment to shed some light on
the contribution static and dynamic power share of the increased
power consumption when increasing temperature. To this end, we
determine the amount of power consumption increase with temper-
ature with the board idle state (no load). We use the methodology
presented in §3. Figure 4 shows a 62% increase in idle power at
70ºC compared to 25ºC in the medium frequency (0.60 watts), while
the increase in high frequency is 36.9% (0.84 watts). On average,
this increase accounts for 70% of the total increase at full load in
the medium frequency and (53% in the high frequency). Since most

5

EdgeSys ’23, May 8, 2023, Rome, Italy Ahmadi et al.

25℃ 30℃ 35℃ 40℃ 45℃ 50℃ 55℃ 60℃ 65℃ 70℃

1.0

1.5

2.0

2.5

3.0

Po
we

r c
on

su
m

pt
io

n
(w

at
t)

medium frequency
high frequency

Figure 4: Boxplots present the distributions of the measured idle
power consumption at different temperatures in the medium and
high frequencies. Median values represented by circle markers are
connected by the lines.

power directed to memory is background power (i.e., load inde-
pendent) [14] we can infer that 30-50% of the power increase with
temperature is due to dynamic power increase in the CPU and GPU.
The rest is a combination of static power increase in CPU/GPU and
power increase in the memory.
[D2] What are the mechanisms that generate the observed impact
of ambient temperature on performance? We have attempted to
understand whether a specific processing unit or the memory is
the main culprit by using microbenchmarks (compute-intensive on
CPU/GPU only, and memory intensive). The only instance where
we observed a notable impact was a memory intensive benchmark
with small buffer sizes (2% slowdown at 70ºC).
[D3] Do these differences matter from an application perspective?
While differences of 20-40% (for power) and even 2-5% (runtime)
are generally seen as significant, temperature effects on power
and runtime are often neglected when designing edge applications.
To further demonstrate the significance of these effects, we focus
on one scenario: optimization frameworks designed to meet the
QoS requirements of edge applications by adjusting the frequency
levels of edge platform’s components [1, 2, 5, 6, 9, 10]. For example,
for a deadline-constrained application, an optimization framework
will aim to select a frequency configuration that fulfills the task
deadlines with minimum energy consumption.

This is made possible by the wide range of frequencies sup-
ported by current edge platforms, leading to a range of 20-50x
for performance/power consumption for the platform. The num-
ber of possible frequency configurations, however, is large (e.g.,
1,768 for TX2 and 3,600 for AGX), and the optimal configuration
cannot be found by a brute-force search at execution time. A num-
ber of model-based frameworks have been proposed to solve this
problem [1, 2, 5, 6, 9, 10], but they are all temperature-oblivious
even though their effectiveness depends on the accuracy of the
models used (to estimate the impact of frequency configuration
choice on the target workload). Our experiments with one of these
temperature-oblivious frameworks, NeuOS [1] demonstrate this
point: the framework is susceptible to multiple QoS violations in
case of ambient temperature variations (see Figure 5 and its caption).
Such violations in edge applications can have severe consequences

Mobilenetv2

19.6

19.8

20.0

20.2

20.4

Ru
nt

im
e

(m
s)

Googlenet

19.8

19.9

20.0

20.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Squeezenet

19.5

19.6

19.7

19.8

19.9

20.0

20.1

Ru
nt

im
e

(m
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Shufflenetv2

19.6

19.8

20.0

20.2

deadline

Figure 5: Plots present the application runtime of 20 consecutive
inference tasks of different ML models at 70ºC while using NeuOS
with pre-populated 25ºC characterization data as the frequency opti-
mization framework. The QoS objective for all workloads is set to 50
FPS (i.e., 20 ms deadline). Plots present several instances of deadline
violations on all workloads which are attributed to the temperature-
oblivious nature of this framework.

such as an autonomous system failure, potentially leading to safety
violations.

Acknowledgements: This work was partially supported by grants from Huawei
and the Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES
[1] S. Bateni and C. Liu. 2020. Neuos: A latency-predictable multi-dimensional

optimization framework for dnn-driven autonomous systems. In USENIX ATC.
371–385.

[2] B. Cox and J. Galjaard et al. 2021. Masa: Responsive Multi-DNN Inference on the
Edge. In IEEE PerCom.

[3] C. Curtsinger and E. Berger. 2013. STABILIZER: Statistically Sound Performance
Evaluation. SIGARCH Comp. Arch. News, 219–228.

[4] A. Maricq et al. 2018. Taming Performance Variability. In USENIX OSDI. 409–425.
[5] C. Imes et al. 2015. POET: a portable approach to minimizing energy under soft

real-time constraints. In IEEE RTAS. 75–86.
[6] M. Han et al. 2019. MOSAIC: Heterogeneity-, Communication-, and Constraint-

Aware Model Slicing and Execution for Accurate and Efficient Inference. In IEEE
PACT. 165–177.

[7] N. Razali et al. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. Journal of statistical modeling and analytics,
21–33.

[8] P. Chestovich et al. 2022. Temperature Profiles Of Sunlight-Exposed Surfaces In A
Desert Climate: Determining The Risk For Pavement Burns. Journal of Burn Care
& Research: Official Publication of the American Burn Association, irac136–irac136.

[9] S. Bateni et al. 2018. PredJoule: A Timing-Predictable Energy Optimization
Framework for Deep Neural Networks. In IEEE RTSS. 107–118.

[10] S. Han et al. 2016. Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints. In Mobile Systems, Applications,
and Services Conference. 123–136.

[11] S. Maity et al. 2021. Thermal-aware adaptive platform management for heteroge-
neous embedded systems. ACM TECS, 1–28.

[12] T. Baruah et al. 2018. Airavat: Improving energy efficiency of heterogeneous
applications. In DATE Conference. 731–736.

[13] T. Mytkowicz et al. 2009. Producingwrong data without doing anything obviously
wrong! ACM Sigplan Notices, 265–276.

[14] A. Karyakin and K. Salem. 2017. An analysis of memory power consumption in
database systems. In Workshop on Data Management on New Hardware. 1–9.

[15] V. Lakshminarayanan and N. Sriraam. 2014. The effect of temperature on the
reliability of electronic components. In IEEE CONECCT. 1–6.

[16] Y. Lee. 2021. Thermal-Aware Design and Management of Embedded Real-Time
Systems. In DATE Conference. 1252–1255.

6

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Environment setup
	3.2 Data Collection and Terminology

	4 Experimental Setup
	4.1 Workload
	4.2 Hardware Platform
	4.3 Temperature-Controlled Chamber

	5 Characterization Results
	6 Summary and Discussion
	References

