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Abstract—This study offers a methodology to characterize
intra- and inter-node variability and applies it on two hetero-
geneous edge platforms (the NVIDIA Jetson AGX and Nano) for
performance and power consumption. Firstly, we explore intra-
node variability: investigate to what degree deployment decisions
can limit it, highlight that it is unavoidable, and offer a scale so
that one can compare to what other studies report. Secondly, we
characterize inter-node variability by answering two questions:
(i) Are the platforms we study statistically different in terms of
the applications’ power draw and runtime? and (ii) What is the
magnitude of these differences? Finally, we attempt to answer
the question of why is it paramount to characterize variability
and take it into account? to achieve this, we discuss examples
from the compiler and runtime optimization domains.

I. INTRODUCTION

Context. Recent heterogeneous edge platforms (e.g., NVIDIA
Jetson) employ a System on Chip (SoC) design that incor-
porates Processing Units (PUs) and memory modules that
are configurable at runtime (e.g., by changing the operational
frequency). As these devices are often used in resource
constrained environments (e.g., battery powered), tuning the
application and/or the platform configuration to maximize
efficiency is essential [1], [2]. Such tuning relies on accurate
characterization and/or modeling of the platform performance
and power consumption to choose the best deployment config-
uration [1]–[4], compiler optimizations [5], [6], and/or to build
performance/energy models. However, one major challenge
often ignored in this context is: variability.

We define variability as a non-negligible difference between
measurements of metrics of interest (e.g., power, runtime)
under the same conditions (i.e., benchmark, software stack,
hardware platform). Variability can manifest either over-time
on the same node – i.e., intra-node variability, or across space,
over multiple nodes – i.e., inter-node variability.

While variability has been exposed in other contexts (
e.g., High-Performance Computing (HPC) [7]–[10] and Cloud
Computing [11], [12] as we discuss in §II) in Edge / Internet of
Things (IoT) contexts, variability has often been ignored even
though it has the potential to be more significant. Reasons
for an increased magnitude in these environments include:
(i) devices that incorporate processing units with different
architectures (each with a range of operational frequencies)
which makes it more challenging to bin the devices based on

their operating characteristics; (ii) a large number of deployed
devices, even for a single application (e.g., traffic monitoring),
which increases the chance of deploying supposedly ’identical’
devices, yet sourced from multiple manufacturers and thus
with some differences [13]; and (iii) deployment scenarios that
are less controlled (e.g., no external temperature control).

Goals. We have two goals: firstly we aim to provide a
methodology to characterize intra- and inter- node variability.
Secondly we apply this methodology on two heterogeneous
edge platforms (for performance and power consumption) and:

Characterize intra-node variability and understand to what
degree deployment decisions can limit it (§III). Additionally
we preliminarily investigate the impact of ambient temper-
ature variation (§VI-B).
Characterize inter-node variability (§IV). To this end, our

methodology focuses on two themes: (i) we explore whether
the platforms we study are statistically different in terms of
the applications’ power draw and performance, and (ii) we
explore various metrics to quantify the magnitude of these
differences (§IV).
Based on these characterizations, we argue that the observed
variability matters form an application perspective (§VI).

Challenges. There are three main challenges in characterizing
variability. First, choosing sound statistical techniques (§IV).
With a few notable exceptions [5], [11], related work fails to
use sound statistical techniques: for example, other studies use
fixed-size samples without a rationale to support the chosen
size, do not present confidence intervals/levels, offer only
visual comparisons between distributions, and/or implicitly
assume that the distributions of interest are Gaussian.

Second, carefully designing the experimental setup (§III).
Over the past decade, prior work in HPC/cloud contexts (e.g.
[7]–[11], [14]–[20]) has used a variety of ad-hoc experimental
setups and data collection methodologies. As such, it is
not possible to compare the results of these studies, or to
understand if any of them offers a realistic lower bound for the
variability that will be observed in practice. Our methodology
proposes a rigorous experimental setup and data collection
methodology, and offers a path to put past results in context.

Third, dealing with the large available configuration space
(§V) particularly for modern heterogeneous edge platforms.



Fig. 1. Methodology roadmap and the key techniques employed by
each of the building blocks of our methodology.

This stems from two factors: (i) a large number of hardware
components that can be tuned (e.g., processing units, memory
controller), and (ii) a wide range of available configurations
for each component (e.g., an over 10x frequency range, with
over a dozen levels for each component for the NVIDIA Jetson
line). This makes it time consuming to cover the whole space
when measuring the metrics of interest for multiple workloads.

Contributions. The main contribution of this paper is to
present a methodology for studying the variability of edge
platforms. We use this methodology to characterize intra-
and inter-node variability on two popular edge platforms: the
NVIDIA Jetson AGX and Nano. We use diverse workloads:
ten Convolutional Neural Network (CNN) inference work-
loads, as well as kernels from the Rodinia [21] benchmark
suite. The main contributions are:

A statistical methodology for characterizing variability.
We propose a generic, platform-neutral, statistically-sound
methodology for studying intra- and inter- node variability
(§III, §IV). Figure 1 presents an overview of its main com-
ponents. Our methodology leverages well-known hypothe-
sis testing methods: K-samples Anderson-Darling [22], 2-
samples Kolmogorov-Smirnov [23], Benjamini–Hochberg
False Discovery Rate correction [24]), and effect size es-
timation - Robust d [25]. These techniques are platform
neutral, non-parametric (i.e., they do not make assumptions
about the underlying distributions), and require only inde-
pendent measurements sampled from the different charac-
terized devices.
A characterization of intra-node variability. (§III-D). We
compare the impact of different controls that can be applied
during application runtime to limit intra-node variability.
Our experiments show a sizeable intra-node variability
reduction (geomean: 5.2x for runtime and 5.8x for power)
depending on the controls used. This characterization has
multiple uses:
⋄ A practical guide to application developers/deployers to

reduce intra-node variability based on the information
that our characterization offers on the impact and the cost
of various variability reduction measures.

⋄ A unifying reference point to compare past work on
variability [7]–[11], [14]–[20] as different projects use
different controls thus, their results are not directly com-

parable.
A characterization of inter-node variability. (§IV). We show
that even though the nodes are labeled by the manufacturer
as identical (same SKU) they appear as statistically different
in a majority of cases. We quantify the differences, i.e., we
quantify the effect size, for multiple benchmarks across the
entire frequency configuration range. For power, we find that
differences are large (frequently higher than ±10% and up
to ±40%) and stable across benchmarking scenarios. For
runtime, we find smaller and workload dependent differ-
ences (generally within the ±6% range, but sometimes up
to ±20%).
A preliminary characterization of the impact of temperature
variation on performance and power draw (§VI-B).
A discussion on the significance of the variability levels we
find. We present a discussion, based on real scenarios (§VII),
that the reported variability in this study is impactful and
necessitate accounting for it during application optimisation
and deployment.

Workloads. The two categories of workloads we employ are
commonly used to study the performance and power consump-
tion of heterogeneous edge devices: (i) inference workloads
using CNNs which are often deployed on edge platforms in
contexts that have soft real-time constraints such as Computer-
Vision (CV) applications. We note that CNN inference work-
loads are the main building blocks of several industry-backed
benchmark suites (e.g., MLPerf [26], EdgeBench [27], AIMa-
trix [28], EdgeAIBench [29], and MLMark [30]). CNN work-
loads are complex aggregating more than a dozen different
kernels with hundreds of individual kernel executions - thus
they are less prone to the idiosyncrasies of the individual
kernels or their launch contexts. (ii) Rodinia benchmarks
which are often used to benchmark GPU-accelerated systems.
In §V-B, we provide more details and expand on the rationale
behind our choice of workloads.

II. BACKGROUND

Classifying variability. Table I presents a classification of
variability over two criteria. The first looks at where vari-
ability manifests: over time within the same node (intra-node
variability), or over space across multiple nodes (inter-node
variability). The second criterion looks at the source of the
variability:

software: e.g., interference with the OS and other applica-
tions [31], [32], program state initialization [5].
hardware: e.g., process and manufacturing variations for
components [13], [33].
environmental factors such as thermal conditions [34], pres-
sure, humidity, or supply voltage variations [35].

Implications of ignoring variability. The impact of Vari-
ability has been highlighted in multiple scenarios including:
(i) user experience and satisfying Quality of Service (QoS)
requirements in mobile applications [32], (ii) performance in
large-scale Bulk-Synchronous Parallel (BSP) applications [38],
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TABLE I
CATEGORIZING VARIABILITY.

Software Environment Hardware

Intra-
interference with OS/applications [31], [32]
data and executable placement [5]
external systems (I/O, network)

temperature [34],
power source

variations [35]

hardware aging [36]

Inter- different driver / OS versions
manufacturing

process variation [13], [33]
multiple sourcing [37]

or (iii) when building generic models for predicting the
performance and power consumption of a platform [33].
In one example from the mobile computing domain, Wu et
al. [31] show a significant performance variability for Machine
Learning (ML) inference across mobile devices, and draw
attention to the risk of poor user experience if deployments
are optimized for the average observed performance. Wu et
al. focus on intra-node variability only, and do not present a
systematic methodology to characterize it.

Addressing variability. A first step towards addressing vari-
ability is to quantify it. Most characterization studies [39]–
[46] are in the HPC domain. Among these, Weisbach et
al. [47] propose a set of benchmarks based on a lightweight
kernel to characterize performance variability in HPC sys-
tems. Kocoloski and Lange [8] propose Varbench as a set
of benchmarks to precisely measure performance variability’s
impact on BSP applications. A large share of this related work,
however, fails to use sound statistical techniques: for example,
some studies use fixed-size samples without a rationale to
support the chosen size, others do not present confidence
intervals/levels, many offer only visual comparisons between
distributions, and/or make implicit assumptions that the distri-
butions of interest are Gaussian.

A second step is to incorporate variability in the design
and development process. One way to achieve this is to
build probabilistic models (e.g., for runtime estimation) that
take variability into account to achieve better QoS guar-
antees [32]. Another approach is to dynamically adapt the
runtime environment (e.g., scale processors’ frequencies), or
re-balance the workload [8] to handle variability. A more
conservative approach is to optimize the system based on the
worst case [31].

III. INTRA-NODE VARIABILITY

We start by focusing on intra-node variability with three
complementary goals in mind: first, we aim to quantify the
level of intra-node variability likely to be observed in real de-
ployments. As multiple configuration / deployment decisions
- e.g., enabling or disabling the default Dynamic Voltage and
Frequency Scaling (DVFS) governor - impact variability, we
aim to study their impact. Second, as prior work on variability
lacks unified experimental controls, our study over a range of
deployment decisions offers an avenue to put these past studies
in a common context. Third, as we aim to study the impact of
temperature variation (§VI-B), and inter-node variability, we
need to find an experimental setup that minimizes the intra-
node variability to mitigate its impact on the other two factors.

We adopt a methodology that consists of two key elements:
Controlling intra-node variability (§III-A). We consider
the various sources of intra-node variability incrementally
to understand their impact. In particular we consider: (i)
controls related to the platform’s power profile configura-
tion, (ii) controls related to DVFS settings adaptation; (iii)
controls related to workload scheduling and temperature,
(iv) PyTorch-specific controls, and (v) application-specific
measures.
Measurement and data collection (§III-B). We use a non-
parametric sampling approach to collect representative data.

A. Methodology: Controlling Variability.

We define six Control Groups (CGs) to limit variability.
Each group contains one or more controls that impact power
consumption and/or runtime. These control groups are:

CG0 - baseline controls that are included in all experiments:
(i) prevent any remote access or IO operations during data
collection, (ii) place boards in the same ventilated rack in an
air conditioned room (i.e., same ambient temperature), (iii)
install the same software stack (i.e., benchmarks, libraries,
drivers, OS image, etc.) on all the identical boards, (iv)
remove unnecessary services that are pre-installed on the
boards, and (v) limit concurrent user applications to one
(the target benchmark).
CG1 - controls related to the platform’s power profile
configuration, i.e., the power envelope).: (i) modify the
NVIDIA default power profile model (MAX-N) to allow
all frequencies of the CPU and set it as the default power
profile on all boards, (ii) prevent the CPU cores from going
into idle state, (iii) use the default DVFS governor (e.g.,
SchedUtil for CPU and nvhost podgov for GPU), and (iii)
set the number of application threads to the number of cores
available onboard (8 cores for the AGX).
CG2 - controls related to dynamic frequency and voltage
settings adaptation: (i) set all components (CPU, GPU,
and memory controller) governors to userspace, (ii) fix the
components’ frequencies to maximum, and (iii) disable rail
gating for the CPU and GPU.
CG3 - controls related to workload scheduling and temper-
ature: (i) isolate six out of the eight CPU cores for the target
benchmark (i.e., core specialization), (ii) set the number
of benchmark threads to six (i.e., the number of isolated
cores), (iii) pin the benchmark threads to the isolated cores
to prevent the OS from thread interruption and migration,
and (iv) turn the fan on and set it to the maximum speed.
CG4 - PyTorch-specific measures that impact the runtime
performance: (i) turn on the Just-In-Time (JIT) compiler
optimization, and (ii) turn off gradient computations explic-
itly. Both can be done in PyTorch using a Python context
manager.
CG5 - additional application and PyTorch-specific mea-
sures with high performance impact (and thus unlikely to
be used in practice): (i) set the underlying CUDA Deep
Neural Network (cu-DNN) library algorithm selection to
deterministic mode (i.e., always use the same algorithm for
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the target kernel - e.g., convolution), and (ii) disable the
cuDNN profiling phase for algorithm selection, and (iii) turn
off the Python Garbage Collector (GC).

Based on these control groups we define five control scenarios
(CS) where each incrementally incorporates one additional
control group starting at CG0. The general rule is that CSi

contains CG0 to CGi ∀i ≥ 1 (CG0 is the baseline for all
control scenarios). Section III-D highlights the impact of the
various control scenarios on intra-node variability.

B. Methodology: Data Collection

On each board, for each benchmark, and for each frequency
configuration, we execute the following five-step sequence to
collect a sample 1.

P1: Reboot the board to always start from the same state.
P2: Restart the characterization script (that runs the target
benchmark) at least five times to eliminate any board-level
cold-start effects (i.e., after the reboot in P1). We discard
this initial data.
P3: Run five warm-up iterations of the target benchmark to
eliminate any application-level cold-start effects.
P4: We call a block a set of repetitions of the segment
of code that is benchmarked. We determine the number of
repetitions (i.e., the block size) such that it meets three
criteria: (i) the block contains at least 100 iterations of
the target benchmark, (ii) the block runtime is at least
one second, and (iii) the overhead of the timer and CUDA
synchronization calls is ≤ 0.1% of the block runtime.

For runtime an observation1 is the runtime of the block
divided by the block size, while for power an observation
is a power reading captured from the power sensors during
the block runtime.
P5: Collect multiple observations to fill a sample1. We
collect as many observations as needed to reach a tight
confidence interval for estimating the median. This criteria
guarantees that the collected samples: (i) have low noise
levels, as such, they are representative of their underlying,
unknown populations, and (ii) allow us to uncover hidden
patterns of inter-node variations as we show later in §IV. To
achieve this, our data collection mechanism stops when the
relative margin of error (RME)2 for estimating the median
is ≤ 0.5% at the 99% confidence level (i.e., RME is the
radius of the confidence interval). We collect at least 50
observations per sample (even when the RME threshold is
satisfied with fewer).

The key features of our methodology are:
Platform independent. We stress that the decision to stop
the data collection for a sample (in P5 below) does not
make any assumption about the underlying distribution and,

1Terminology used: A sample is a set of observations (i.e., measurements
for power or runtime at one frequency configuration). A frequency configura-
tion is a unique combination of CPU, GPU and memory controller frequencies.

2For a sample x of n observations: RME = 100 ∗ |max(x[l], x[r])−
Q2|/Q2 where Q2 is the sample median, x is sorted ascendingly, l and
r are calculated based on the formula described in [48] as follows: l =

⌊n
2
− zscore ∗

√
n
2

⌋, and r = ⌈1 + n
2
+ zscore ∗

√
n
2

⌉

thus, it would not require any change to characterize a
platform with different characteristics. This solution avoids
the disadvantages of popular data collection approaches
which often implicitly assume a Gaussian distribution.
Conservative. To reduce possible noise introduced by inac-
curate timers, each observation is the average of multiple
runs of the target benchmark (see P4 below). Thus our
methodology offers an extremely conservative view of run-
time variability. Our results should be seen as lower bound
for what may be observed in practice.
Tight confidence intervals (with high confidence). Typically
in the literature a fixed number of observations is collected.
This contrasts with our approach, which makes sure that
a sample has enough observations to guarantee a narrow
confidence interval for the estimate of the median (we aim
for a range of 1% of the value of the median, that is 0.5%
RME), with high confidence (99%). Thus, each sample
accurately represents the underlying performance or power
consumption of the target benchmark as noise has limited
impact on the quality of the collected data.

C. Experimental Setup

We defer to a separate section (§V) the mundane parts of our
experimental setup: the hardware platforms, the benchmarks,
and additional details for data collection and experimental con-
trols used in both intra- and inter-node variability experiments.

A note on temperature control and thermal throttling. We
have placed all boards in a well ventilated enclosure. We
monitor the on-board temperature sensors and make sure tem-
perature is within a narrow 35 - 45C band for all experiments.
According to the latest NVIDIA Jetson AGX thermal design
guide [49], the maximum operating temperature limits (to
operate without performance reduction) for the CPU, GPU,
and other components are 86, 88, and 82°C respectively.
Above these temperatures software or hardware throttling will
reduce runtime frequencies to avoid overheating, thus reducing
the board’s performance, and impacting the reliability of the
results. We also operate the on-board fans at the maximum
speed all the time (they typically start operating automatically
at ≈50°C only).

D. Results and Analysis

Metrics. We use two metrics to quantify variability:
QCV: the Quartile-based Coefficient of Variation QCV =
100 ∗ (Q3−Q1)/Q2.
MADM ratio: the Median Absolute Deviation from
the Median ratio. For a sample X containing ob-
servations x0, x1, ...xn, MADM = median[xi −
median(X)]/median(X).

Both metrics are statistically robust [50]–[53] - with good
performance for data drawn from a wide range of probability
distributions, including non-parametric distributions. Dividing
by the sample median allows us to calculate relative, dimen-
sionless, variability scores so that we can compare across dif-
ferent control scenarios, and summarize results across multiple
nodes.
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Results. Figure 2 shows the boxplot 3 of the QCV and MADM
metrics across 14 AGX boards for the control scenarios defined
in §III-A for one CNN: SqueezeNet. Table II shows the median
value for QCV across the 14 AGX boards for each network
(the trends for MADM or other cutoff points in the distribution
are similar thus, due to limited space, we do not present them).

Takeaways. The results highlight a number of observations:

Intra-node variability manifests itself for both runtime and
power in spite of our conservative measurement approach,
and tight controls used to limit it. We stress that these results
are lower bound estimates for the intra-node variability that
will be observed in practice given that not all the controls -
even the most basic ones included in CG0 and thus included
in all our experiments - can always be used for reasons
related to their performance impact or deployment scenario
constraints (e.g., completely disabling advanced power sav-
ing features, co-deployed applications, or environments that
limit the temperature variations).
Deployment and configuration decisions have a sizeable
impact and can reduce the observed intra-node variability
for both runtime and power. Comparing CS1 and CS5 (CS4
for power) the geomean variability reduction is 5.2x for
runtime (5.8x for power). There is some variation depending
on the specific application – e.g., variability reduction
can be as high as 10x for some applications (e.g., VGG,
ShuffleNet).
CS4 is a potential middle ground between a viable level of
control and performance/power impact. To substantiate this
claim we present in detail an analysis for SqueezeNet.
⋄ Performance. Starting with CS1 performance tends to im-

prove gradually and reaches its peak at CS4. The reasons
are that in CS4: (i) we fix the dynamic frequency and
power settings of the boards, thus guaranteeing maximum
possible performance during all the application phases
(i.e., no frequency scale down at any stage), (ii) we isolate
CPU cores and pin threads to these cores, thus eliminat-
ing any thread scheduling or migration by the OS and
improving locality, and (iii) we enable PyTorch-specific
performance improvements. These measures improve the
performance, and also limit variability as the system
has limited dynamic control on the runtime conditions.
As such, both variability scores (QCV and MADM)
decrease gradually starting with CS1 till CS4. In CS5,
we disable the dynamic cuDNN optimizer that picks the
best algorithm for some kernels (e.g., convolution) during
runtime. Instead, it uses a fixed algorithm. This leads
to a significant drop in performance (70% increase in
runtime for CS5 compared to CS4) yet also to a significant
variability reduction (by 68% for QCV from CS4 to CS5).

⋄ Power consumption. From CS1 to CS3, power consump-

3Box plots interpretation: For all the box plots presented in this paper
the top and bottom sides represent the first and third quartiles (Q1 and Q3).
The horizontal line represents the median (Q2). The bottom/upper fences
represent the 10th and 90th percentiles of the data respectively. The outliers
are removed for legibility.

Fig. 2. Control scenarios’ impact on variability (for SqueezeNet).
The X-axis is the control scenario ID. The Y-axis presents the
QCV/MADM. Boxplots3 summarize data collected from 14 Jetson
AGX boards.

TABLE II
MEDIAN QCV VALUES FOR DIFFERENT CONTROL SCENARIOS FOR EACH

NETWORK. THE MAX/MIN COLUMN INDICATES THE RATIO BETWEEN THE
MAXIMUM AND MINIMUM QCV VALUES ACROSS ALL CONTROL

SCENARIOS FOR EACH NETWORK (THE ∞ VALUES ARE EXCLUDED IN THE
MEAN AND GEOMEAN CALCULATIONS).

Benchmark Runtime Power

CS1 CS2 CS3 CS4 CS5 Max/
Min CS1 CS2 CS3 CS4 CS5 Max/

Min
AlexNet 0.52 1.55 1.47 1.17 0.55 2.97 1.27 0.40 0.52 0.55 0.74 3.14
DenseNet 0.45 0.09 0.07 0.05 0.55 11.12 1.27 0.90 0.61 0.59 1.26 2.16
GoogeLeNet 5.07 2.91 2.58 2.52 1.32 3.85 3.34 0.43 0.89 0.72 1.23 7.78
Inception3 0.67 1.31 0.68 0.35 1.47 4.18 0.97 0.63 0.61 0.61 1.12 1.86
MnasNet 5.76 3.81 3.33 2.82 0.63 9.10 1.43 0.93 0.00 0.03 1.17 ∞
MobileNetV2 4.12 3.81 3.00 3.25 2.80 1.47 1.44 0.03 0.002 0.75 0.02 589.20
ResNet 0.91 2.24 1.89 1.99 1.96 2.46 1.33 0.64 0.62 0.60 0.92 2.21
ShuffleNetV2 12.67 3.84 3.87 2.96 1.18 10.77 0.01 0.02 0.01 0.02 0.01 2.02
SqueezeNet 5.44 5.83 3.57 2.59 0.82 7.09 3.09 0.62 0.32 0.25 0.91 12.40
VGG 0.79 0.15 0.18 0.13 0.07 10.74 1.16 0.46 0.46 0.48 0.52 2.50
GeoMean 1.98 1.51 1.23 1.00 0.82 5.20 0.97 0.32 0.00 0.29 0.42 5.84
Mean 3.64 2.55 2.06 1.78 1.14 6.38 1.53 0.51 0.40 0.46 0.79 69.25

tion varies marginally but CS1 exhibits the highest vari-
ability score due to the dynamic nature of DVFS default
scheduler. CS4 draws, by far, the most power amongst
all control scenarios as it disables rail gating, fixes fre-
quencies to maximum, and enables resource-demanding
optimizations. CS5 consumes the least amount of power
(40% decrease from CS4). We believe this happens due
to a lower resource utilization by the non-optimum fixed
algorithm selection for the underlying kernels in CS5.

Disabling cuDNN optimizations for kernel selection has
multiple side effects on individual benchmarks: lower vari-
ability for most of them, higher variability for a few, and a
reduction in absolute performance for all networks.

IV. INTER-NODE VARIABILITY

We shift our focus to inter-node variability characterization.
We show that for most frequency configuration points the
nodes appear as statistically different (for both performance
and power) (§IV-A) and we offer a metric to quantify this
difference (§IV-B).
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Experimental setup highlights. We stick with our uncon-
ventional presentation structure: we present below the exper-
imental setup elements that are essential to understand and
appreciate the inter-node variability characterization, while the
more mundane parts of the experimental setup are presented
in §V.

The Jetson boards are configured with CS4 control scenario
used for intra-node variability characterization (§III-A) for
CNNs workloads (CS3 is used for Rodinia as CS4 and CS5
are not applicable). The motivation behind this choice is that
this control scenario limits intra-node variability as much as
possible without sacrificing application-specific performance
optimizations (e.g., cuDNN algorithm selection) or employing
impractical controls (e.g., disabling Python’s GC) - thus it is
the likeliest to be adopted in practice if one focuses on limiting
variability.

We use the data collection methodology described in the
previous section (§III-B). For each benchmark we collect one
sample1 for power and one for runtime, at each frequency
configuration point on each board. This leads to about 205,000
samples and at least 10 million observations on the Jetson
AGX, and about 160,000 samples, and at least 8 million
observations on the Nano.

A. Q1: Are the boards statistically different?

Methodology. To answer this question, we leverage statistical
significance tests. These tests are generally used in two con-
texts: (i) to determine if a sample from a certain population be-
longs to a specific parametric distribution [54] (i.e., goodness-
of-fit test), or (ii) to determine whether samples drawn from
different populations belong to the same distribution. We are
interested in the latter: for a chosen configuration point, we
extract a sample (power consumption or runtime) on each
board and use the statistical significance tests to understand
whether the boards appear as identical (i.e., do the samples
likely come from the same distribution?).

For each test, there is a null hypothesis (e.g., that the
provided samples belong to the same distribution). We test
whether we can reject the null hypothesis with high confidence
(99%). We use a multi-step analysis consisting of three tests:

First, the K-samples Anderson-Darling test [22], [54], al-
lows testing multiple nodes at a time (i.e., the null hypoth-
esis in this case is that all K samples drawn from the K
nodes belong to the same distribution).
Second, since the above test would reject the null hypothesis
even with one defective node, we use the two-samples
Kolmogorov-Smirnov (KS) test [23] and compare nodes
pairwise (i.e., the null hypothesis in this case is that the
samples drawn from nodes A and B belong to the same
distribution).
Third, as we run the KS test to test multiple null hypothe-
ses (i.e., for multiple frequency configurations and bench-
marks), we apply the Benjamini–Hochberg False Discovery
Rate (BH-FDR) multiple-test correction to the two-samples
KS test p-values to control the rate of false-positives (i.e.,
incorrectly rejecting the null hypothesis).

Fig. 3. Boxplots3 present K-samples Anderson-Darling test score for
the inference task of ten different CNNs on the Jetson AGX for over
450 different frequency configurations. The outliers are omitted for
legibility. The dashed horizontal line indicates the critical value for
99% confidence level. (Running on Nano or using Rodinia bench-
marks show similar trends but are omitted due to space limitations).

Results: K-samples Anderson-Darling Test. For each fre-
quency configuration and benchmark, we run the K-samples
Anderson-Darling test (Fig. 3 presents this for AGX). We find
that, with 99% confidence, the null hypothesis can be rejected
for virtually all the configurations sampled for both power and
runtime for both AGX and Nano.

Results: Two-samples Kolmogorov-Smirnov Test. The K-
samples AD test indicates that at least one board is different.
This could be a defective board, so we turn to the two-
samples Kolmogorov-Smirnov test to compare the boards
pairwise. We run the test for each configuration and bench-
mark, and for each board pair: this leads to about 42K tests
for AGX (19K for Nano) for each benchmark. To limit the
false positives when testing multiple hypotheses we apply the
Benjamini–Hochberg [24] False Discovery Rate correction.

Tables III and IV show the ratio of the tests where the null
hypothesis (i.e., the samples belong to the same distribution)
can be rejected. On average, across all benchmarks, the results
indicate that the boards are statistically different: the null
hypothesis can be rejected with 99% confidence for most
pairwise comparisons: on the AGX over 99% for power
consumption and 82% for runtime; while on the Nano the
corresponding ratios are 77% and 79%.

B. Q2: How significant is the difference between boards?

Methodology. Using the statistical significance tests we
demonstrated that for a wide majority of frequency configura-
tions and benchmarks, boards are indeed statistically different
(a ’yes/no’ question). However, statistical significance tests do
not indicate the magnitude of the difference; i.e., they do not
indicate the effect size [55].

One of the most popular techniques to estimate the effect
size is the Cohen’s d [56]. It measures the effect size as
the difference between two samples’ means divided by their
pooled standard deviations. This technique, however, assumes
that both samples are drawn from normal distributions and
have the same variance. Since these assumptions do not hold
in our case, we use the scaled robust d (dr) metric [25],
a modification of Cohen’s d that is robust [55]. Similar to
Cohen’s d, the scaled robust d (dr) compares the differences
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TABLE III
PERCENTAGES OF TESTS IN WHICH THE P-VALUES INDICATE THAT THE NULL HYPOTHESIS CAN BE REJECTED ON THE JETSON AGX

(I.E., SAMPLES DO not BELONG TO THE SAME DISTRIBUTION) FOR TWO DIFFERENT CONFIDENCE LEVELS (99% AND 95%).

Conf AlexNet DenseNet GoogleNet Inception3 MnasNet MobileNetv2 ResNet ShuffleNetv2 SqueezeNet VGG Mean

Power 1% 99.84 99.84 99.76 99.81 99.80 99.78 99.82 99.59 99.90 99.89 99.80
5% 99.86 99.86 99.79 99.85 99.83 99.81 99.86 99.64 99.92 99.93 99.84

Runtime 1% 84.24 85.28 86.21 83.54 92.88 90.65 90.95 94.95 84.95 28.46 82.21
5% 88.70 89.15 90.24 88.15 95.29 93.52 93.96 96.69 89.28 34.01 85.90

TABLE IV
PERCENTAGES OF TESTS IN WHICH THE P-VALUES INDICATE THAT THE NULL HYPOTHESIS CAN BE REJECTED ON THE JETSON NANO

(I.E., SAMPLES DO not BELONG TO THE SAME DISTRIBUTION) FOR TWO DIFFERENT CONFIDENCE LEVELS (99% AND 95%).

Conf AlexNet DenseNet GoogleNet Inception3 MnasNet MobileNetv2 ResNet ShuffleNetv2 SqueezeNet VGG Mean

Power 99% 98.18 63.75 98.94 89.79 98.51 97.88 98.26 98.9 98.02 48.65 89.09
95% 99.16 75.36 99.42 93.85 99.18 98.74 99.19 99.46 98.91 60.73 92.4

Runtime 99% 98.13 93.75 98.43 96.51 97.25 96.66 98.38 62.27 74.39 87.73 90.35
95% 98.76 95.09 99.1 97.3 98.01 97.38 98.94 70.94 80.94 91.29 92.77

between the means of two samples relative to their pooled
standard deviation. More intuitively, a large dr value indicates
that the means of the two distributions are far apart relative to
their observed variance.

Below, we use the scaled robust d (dr) estimate of the
distance between distributions in two ways: first, in a relative
way, we use it to characterize differences between all the node
pairs (at various configuration points) and show there is a large
range of differences between nodes. Second, we use it in an
absolute way, to study how many node pairs are significantly
dissimilar - by choosing a particular threshold for dr.

Results. Fig. 4 shows the distribution of the dr values on the
AGX. The figure highlights that there is significant spread in
the dr values (particularly for power).

While the interpretation of this metric is context specific, a
first intuition is provided by the guideline originally provided
by Cohen for interpreting d values: ±0.25, ±0.5, and ±1.0
values represent thresholds for small, medium, and large effect
sizes, respectively. With this interpretation, on average across
all benchmarks, on the AGX platform, 77.1% of board pairs
and configurations we observe large differences for power and
33.1% for runtime.

Even with a more conservative threshold of ±2.0, large
differences are observed, on average, about 72.8% for power
and 24.38% for runtime.

Takeaways. This analysis indicates that power consumption
and performance behavior appear as statistically different
across most pairs of ’identical’ boards (on both AGX and
Nano). The dr metric suggests that the magnitude of the
difference is uniformly large for power and smaller (and
less evenly distributed) for runtime. Section §VI offers a
deeper exploration of the observed inter-node variability and
highlights its possible consequences.

V. EXPERIMENTAL SETUP

A. The Experimental Platform

The hardware platform We focus on two popular NVIDIA
heterogeneous edge platforms: the Jetson AGX, and the Jetson

Fig. 4. Boxplots3 presenting pairwise dr values distribution across
ten networks on the Jetson AGX (Rodinia benchmarks show similar
trends but are omitted due to space limitations). The guideline for
interpreting the effect size is: ±0.25, ±0.5, and ±1.0 represent
thresholds for small, medium, and high effect sizes respectively.

Nano. Both combine NVIDIA’s state-of-the-art GPU technol-
ogy with low-powered ARM CPU cores in a shared-memory
architecture to deliver massive compute power and high energy
efficiency in a tiny physical footprint.

Jetson AGX. The most important feature of the AGX in our
context is that it provides a wide (10x) range of frequencies for
the main processing elements and the memory controller. Each
CPU core’s operating frequency can range from 115.2MHz
to 2.265GHz at a fine granularity (with 29 supported CPU
frequency levels). The Volta-based GPU has 512 CUDA cores,
and 64 Tensor cores. The CUDA cores support dynamic
frequency scaling between 114.75 MHz and 1.377GHz at a
fine granularity (with 14 frequency levels). Finally, the AGX
allows dynamic frequency scaling for the External Memory
Controller (EMC) - between 204MHz and 2133MHz (with 9
frequency levels). The frequency state space of these three
components has a total of ≈ 3.6K combinations.

Jetson Nano: Similarly, the Nano supports a range of
frequencies for its CPU, GPU, and memory controller. Each
of the four CPU cores has an operating frequency ranging
from 102.0MHz to 1.479GHz (15 CPU frequency levels).
The Maxwell-based GPU has 128 CUDA cores, supports
dynamic frequency scaling between 76.8MHz to 921MHz
(with 12 frequency levels). The Nano’s EMC supports dynamic
frequency scaling for two levels, 204MHz and 1600MHz. The
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frequency state space of these three components has a total of
360 combinations.

Table V provides an overview of the Jetson AGX and Nano
features.

Dealing with the large configuration space On the AGX
board, there are ≈3.6K unique combinations (i.e., configu-
rations) of CPU, GPU, and memory controller frequencies.
We use sampling to reduce the space by almost one order
of magnitude: we sort each component’s (e.g., CPU, GPU)
frequency range, and sample every other frequency. This
sampling scheme reduces the space to 525 configurations,
yet covers most of the frequency range of each component.
On the Nano, we sample the largest twelve (out of 15) CPU
frequencies, 9 (out of 12) GPU frequencies, and all memory
controller frequencies (2). This reduces the space from 360
configurations to 216 configurations.

The software stack The NVIDIA JetPack. We use the NVIDIA
JetPack SDK version 4.4 across all AGX boards (v4.5 on the
Nano). It includes the latest Linux OS for Tegra and driver
package (L4T v32.4.6) (v32.5.1 on the Nano) for the Jetson
platform. It also incorporates a full set of optimized software
libraries (e.g., CUDA v10.2) to build applications targeting the
various on-board PUs (e.g., GPU, deep learning accelerators,
computer vision).

B. The Workload

We focus on two different workloads: (i) ML inference models
based on CNNs, and (ii) a sub-set of Rodinia [21] benchmarks.

CNNs are one of the most widely used categories of ML
models. The motivation behind choosing CNNs to benchmark
the variability of edge platforms is twofold: (i) they power sev-
eral computer vision related tasks such as object recognition
and classification in several edge applications [31] [59] (e.g.,
drones, smart home, surveillance, etc.), and (ii) they are the
main building blocks of several industry-backed benchmarks
(e.g., MLPerf [26], MLMark [30], EdgeBench [27], AIMa-
trix [28], EdgeAIBench [29]).

Machine learning: PyTorch framework. We use Py-
Torch [60], version 1.6, as it is one of the most widely used
deep learning frameworks. It allows developers and researchers
to build deep learning networks, mainly using the Python
programming language. The core functionality of PyTorch is
implemented in C++ and exposed as Python C++ extensions
to the users (i.e., LibTorch).

Machine learning: Pre-trained CNNs. We use Torchvi-
sion [61], version 0.8, to load the pretrained CNNs used in the
experiments. Torchvision is a popular machine-vision package
- compatible with and part of the PyTorch project - that
encompasses popular data sets, models, and image transforma-
tions to process visual data. All classification CNNs included
in Torchvision are trained and optimized on the 1000-class
ImageNet dataset. Each vision network accepts inputs of a
specific size (i.e., 4D Tensor). We generate a shape-compatible
input tensor for each network (with randomly generated num-
bers), and use it during the inference task. We study ten

different classification networks from Torchvision: AlexNet,
GoogleNet, ResNet, MobilenetV2, MNASNet, SqueezeNet,
Shuffle-NetV2, DenseNet161, VGG16, and InceptionV3.

Rodinia. Rodinia benchmarks are often employed in char-
acterizing the performance of GPU-accelerated systems [21].
The benchmarks represent different categories of applications
(e.g., stencil, dynamic programming) that stress different
components of the underlying computing resources. Addi-
tionally, Rodinia benchmarks offer an alternative workload
to PyTorch-based CNNs with a shallower software stack,
thus allowing us to explore the correlation between software
stack complexity and variability, if any. We use six applica-
tions from Rodinia benchmark [21]: Lower-upper Decompo-
sition (LUD), Hotspot3D, Breadth-first-search (BFS), Near-
est Neighbor (NN), Needleman-Wunsch (NW), and Huffman
coding. We choose this subset because it represents different
categories of computational patterns (e.g., structured grid,
graph traversal, dynamic programming, etc.) from different
domains.

C. Power and Time Measurements

Timing measurements. We use the CUDA Events API [62]
for precise timing measurements (0.5µs resolution). We in-
clude CPU-GPU memory transfers in the timing and power
measurement of GPU-based applications.

Power measurements. For the AGX platform, we use the
two on-board INA3221 [63] (±5% error) Power Monitoring
Units (PMU) that can be read via an exposed virtual file
system (sysfs). PMUs have six power ‘rails‘ (for CPU, GPU,
memory module, computer vision (CV) accelerator, auxiliary
on-chip components, system IO) which measure the power
each component draws. We discard the CV accelerator and
system IO rails as they are not relevant to our experiments.
The Nano has one on-board INA3221 PMU with three power
rails’ (for the CPU, the GPU, and the overall main module
input respectively), of which the CPU and GPU rails are used.
This PMU has a (±5% error) for measurements above 0.2
Watts, and (±15% error) for measurements below that. We
sample the power sensors with a 2Hz sampling rate.

We have confirmed that the PMUs’ (in)accuracy is not the
main element driving the observed variability. For example,
we confirmed the conclusions regarding inter-node variability
using an external power meter (WattsUp Pro Kit [64]) on a
sample consisting of five Jetson AGX boards. The external
meter results are inline with the results collected from the on-
board PMUs. The only difference is a slight reduction in the
absolute differences that we attribute to the additional com-
ponents (e.g., power adaptor losses, flash storage, networking
and other peripherals circuitry) being measured by the external
power meter.

VI. DISCUSSION

We explore two additional topics. First we aim to better
understand the magnitude of the inter-node variability (§VI-A).
Our exploration leads to the following conclusion: for both
power and runtime, differences between nodes are sizeable
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TABLE V
NVIDIA JETSON AGX AND NANO SPECIFICATIONS AS REPORTED BY THE OS AND RELEVANT DOCUMENTATION [57], [58]

AGX Platform Nano Platform
CPU 8-cores ARM v8.0 64-bit CPU 4-cores ARMv8 64-bit CPU

Architecture ARMv8-A ARMv8
L1d/L1i/L2/L3 Cache 64KB/128KB/2MB/4MB 32KB/48KB/2MB/NA
Min/Max Core Frequency Range 115.2MHz → 2.265GHz 102.0MHz → 1.430GHz
Peak Theoretical FLOPS (SP) 144.96 GFLOPS 45.76 GFLOPS

GPU Volta: 4 TPCs — 8 SMs — 512 CUDA Cores — 64 Tensor Cores Maxwell: 4 TPCs — 8 SMs — 128 CUDA Cores — 64 Tensor Cores
L1/L2 Cache 128KB/512KB 128KB/512KB
Frequency Range 114.75MHz → 1.377GHz 76.8MHz → 921MHz
Peak Theoretical FLOPS 1.4 TFLOPS 512 TFLOPS

DRAM 16GB LPDDR4x (2133MHz, 2 Channels) 4GB LPDDR4x (1600MHz, 4 Channels)
Data Bus Width 256bit 64bit
Min/Max EMC Frequency Range 204MHz → 2133MHz 204MHz → 1600MHz
Peak Theoretical Bandwidth 136.512 GB/sec 25.6 GB/sec

and reproducible across runs, which indicates an intrinsic
difference between the boards. For power, the differences are
particularly large and directionally stable regardless of the
benchmark and frequency configuration used. For runtime,
differences are relatively smaller, however, they are still sig-
nificant, and impactful if ignored, as we argue in this section,
and in the next section - §VII).

Second, we aim to explore the impact of temperature varia-
tion on performance and power draw (§VI-B). Our preliminary
data suggest a sizeable impact of temperature variation on both
power and runtime - roughly of the same magnitude as the
inter-node variability effects.

A. In-depth inter-node variability analysis

One drawback of effect-size metrics including the scaled
robust-d we use in §IV-B is that interpreting the obtained
values is domain specific. To shed more light, here we examine
whether there are large differences between boards using an
alternative metric: relative difference RD%.

Data processing. For each board, for each frequency con-
figuration and benchmark we compute the median m for each
sample1 collected (§III-B). Then, across all boards, for the
samples collected for the same application and frequency con-
figuration we compute their median of medians M . Finally, we
go through all the observations of all samples and, to remove
any statistical outliers on a per frequency configuration basis,
we select only the observations that are within the ±0.5% from
their sample’s median (m). For the observations O selected, we
compute two values: (i) the relative difference to the sample’s
median rd = 100∗(O−m)/m, and (ii) the relative difference
to the median of medians RD = 100 ∗ (O−M)/M . We then
group the rd (i.e., intra-node variability) and RD (i.e., inter-
node variability) values per benchmark and board, and use
boxplots3 (the whiskers’ limits are extended to plot all values
as we get rid of the statistical outliers on a per frequency basis
earlier) and scatter plots to present rd and RD distributions
in Fig. 5 (We present a subset of the benchmarks due to space
limitations; other benchmarks and experiments on the Nano
lead to qualitatively similar observations).

Power. We make two observations:
(i) large magnitude - the RD analysis indicates that there
are frequently large differences between boards. The relative
differences are frequently larger than 10% (for some node

pairs even the difference between medians is larger than
10% for all benchmarks); and differences can get as large
as 70% (for nn and lud benchmarks - not shown).
(ii) directionally stable and workload independent - a node
will consistently draw more/less power compared to others
(e.g., node-A always consumes less power than node-B
regardless of benchmark and frequency configuration point),
which indicates that the observed variability is likely due to
inherent differences between the studied boards.

As the levels of power consumed are, depending on the
frequency configuration, between a few watts to 10s of watts,
these differences will matter in a wide range of real world
scenarios where decisions based on power (or energy) are
made. Such scenarios range from battery provisioning to
controllers aiming to minimize power consumption for surveil-
lance cameras by tuning the frequency configuration [1], [65].

Runtime. For runtimes, as hinted by the analysis in §IV, the
inter-node differences are smaller. Since a trend is less striking
visually in Fig. 5, we investigate the distribution of pairwise
RD differences. Table VI presents the following analysis: out
of the over 41k node-pairs and configuration points we have
for each benchmark, the table presents for how many of these
is the median (left two columns) or the maximum (right two
columns) RD difference higher than a certain threshold (3%
and 5%). We use the data cleaning process described earlier
and used in Fig. 5. Based on Fig. 5 and Table VI we make
the following observations:

(i) situations with large pairwise node differences exist for
specific benchmarks and frequency configurations yet they
are not frequent. RD differences can reach up to 20% (e.g.,
nw and ShuffleNetV 2), yet such large values appear for
few frequency configurations.
(ii) smaller, yet significant, differences between nodes are
relatively frequent. Table VI shows that on average (geo-
mean) across CNN benchmarks 4.78% of the data points
have a RD difference between medians larger than 3% (and
0.44% larger than 5%). The differences are more frequent
and more pronounced for Rodinia kernels where 7.53% of
the data points have a RD difference between medians
larger than 3% (and 3.20% larger than 5%). Some bench-
marks (e.g., GoogleNet, ShuffleNetV 2, huffman, nn
and nv) expose larger inter-node differences more fre-
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TABLE VI
PERCENTAGE OF NODE PAIRS WITH A PAIRWISE RELATIVE DIFFERENCE

RD ABOVE A CERTAIN THRESHOLD FOR RUNTIME. THE Medians
COLUMNS (LEFT TWO) COMPARE THE MEDIANS OF TWO CORRESPONDING
SAMPLES FROM A NODE PAIR. THE Maximum Difference COLUMNS (RIGHT

TWO) REPRESENT A WORST CASE SCENARIO BY USING THE FARTHEST
AWAY OBSERVATIONS FROM THE COMPARED SAMPLES (AFTER DATA

CLEANING). VGG IS REMOVED FROM THE GEOMEAN CALCULATIONS.

Benchmark Medians (%) Max Difference (%)
5% 3% 5% 3%

CNNs

AlexNet 0.03 1.25 0.24 3.38
DenseNet 0.04 1.43 0.19 3.61
GoogeLeNet 2.33 10.18 4.66 17.87
Inception3 0.22 2.80 0.82 6.50
MnasNet 1.58 8.58 3.38 15.79
MobileNetV2 0.64 6.73 1.90 13.58
ResNet 3.07 8.90 4.89 14.43
ShuffleNetV2 8.14 23.25 12.49 36.43
SqueezeNet 0.04 2.15 0.31 6.25
VGG 0.00 0.00 0.00 0.23
GeoMean 0.44 4.78 1.40 10.00

Rodinia

bfs 5.95 8.75 6.58 10.43
hotspot3d 0.03 0.57 0.03 0.88
huffman 17.95 27.24 21.54 32.84
lud 1.21 3.62 1.85 5.77
nn 12.94 14.50 13.56 16.90
nw 21.38 25.60 22.55 26.74
GeoMean 3.20 7.53 3.66 9.61

All GeoMean 0.97 5.74 2.06 9.84

quently. (Table VI).
(iii) workload-dependent - a node may appear faster for
one benchmark and slower for another. We believe that
this stems from the fact that different workloads stress the
underlying components (e.g., GPU, Memory) differently.

For both power and runtime, we stress the following: (i)
reproducibility - repeating the characterization experiments
will lead to the same results and conclusions (we verified this
on a subset of the frequency configurations and benchmarks),
(ii) representativeness - the intra-node variability rd values
(left boxplots in Fig. 5) are extremely low, which indicates
the success of our proposed measurement approach to mitigate
noise and suggests that the collected data adequately represents
the true performance and power consumption behavior of the
boards, and (iii) significance - the reported RD values extend
beyond magnitudes that related work deemed detrimental for
QoS guarantees or clean experimental design (we dedicate
section VII to discuss this aspect in more detail).

B. The impact of ambient temperature

So far all experiments have controlled temperature in a narrow
range. We have gathered preliminary data to quantify the
impact of a large temperature variation. We apply the same
methodology and experimental controls as in the rest of this
paper with the exception that we use an older NVIDIA Jetson
TX2 board and we use only the maximum frequency. We
compare two settings: 25°C and 70°C ambient temperature by
placing the board in a controlled temperature enclosure [66].
We verified that throttling does not kick in even at 70°C. We
use a control scenario similar to CS4.

TABLE VII
TEMPERATURE IMPACT ON RUNTIME. THE FIRST TWO COLUMNS PRESENT

THE MEDIAN RUNTIME AT 25C AND 70C. THE SECOND TWO COLUMNS
PRESENT THE MEDIAN SLOWDOWN AT 70C, AND THE THRESHOLD FOR

THE 3RD QUARTILE FOR SLOWDOWN

Model at 25°C
(ms)

at 70°C
(ms)

Slowdown
(median) (%)

Slowdown
(3rd quartile) (%)

Squeezenet 12.97 13.15 1.40% 1.57%
Mobilenetv2 12.24 12.44 1.61% 2.42%

Alexnet 13.77 14.48 5.15% 5.44%
Googlenet 16.48 16.73 1.56% 2.54%

Resnet 14.69 15.06 2.53% 3.00%
Shufflenetv2 14.58 15.06 3.28% 3.81%
GeoMean 2.30% 2.91%

Impact on power draw. As expected the impact is sizeable:
on average, over the benchmarks we have studied, 18.49%
higher power consumption at 70°C than at 25°C. We can
attribute roughly half the increase to higher static power draw,
and the other half to higher dynamic power draw.

Impact on runtime. More surprising is the impact on run-
time. Table VII presents the temperature effect on runtime.
To eliminate the application restart effects, we run each
experiment multiple times (i.e., collect the median of each
experiment) until we estimate the median of medians within
±0.5% with 99% confidence, then compute the median slow-
down (by comparing the median of the medians at 25°C and
70°C); and the 1st quartile of the slowdown distribution (by
comparing Q1 at 25°C and Q3 at 70°C). Runtime at 70°C
is, on average, 2.3% slower, with a maximum slowdown of
5.15% for AlexNet. Q3 slowdown is on average 2.93%, with
a maximum slowdown of 5.44% for AlexNet.

VII. WHY DOES THIS MATTER?

While sections III and IV detail our methodology and
characterize variability on two popular edge platforms, this
section is driven by two interrelated questions: Q1: Why
is it paramount to characterize variability and take it into
account?, and Q2: Are the levels of variability we find high
enough to matter?.

The issue is that in most cases 4 researchers and practitioners
implicitly expect that an application will have the same run-
time (or power draw) for different runs (on the same node or
on identical nodes). As our characterization demonstrates this
assumption does not hold: (i) the variability we find is sizeable
(and likely a lower bound for what is observed in practice);
(ii) some of the factors driving variability are unavoidable; and
(iii) the impact of various factors that drive variability (e.g.,
inter-node differences, temperature) is cumulative.

Below we use a couple of examples to highlight the im-
portance of characterizing variability and to highlight that the
levels of variability we find are large enough to matter. The
first example highlights the challenge of making decisions
based on direct measurement (in the context of compile-
time optimizations), while the second example highlights the

4A study by Mytcowicz et al. [5] confirms that this is common practice:
they surveyed 133 papers presented at top-tier conferences and found that
none of them properly account for (what we call) intra-node variability.
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Fig. 5. Boxplots3 presenting the distribution of rd (grey) and RD (white) values for power consumption (left) and runtime (right) for six
benchmarks on the Jetson AGX. The x-axis shows the node ID (AGX board identifier), and the y-axis indicates the rd and RD values.
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challenge of building accurate models (in the context of model-
based runtime optimizations). We focus here only on runtime,
since the high levels of variability we find for power (which
are frequently larger than 30% and as high as 80%, if we
consider the combined influence of inter-node variability and
temperature) make, this point self-evident for power.

Compile-time optimizations. As a result of the stringent
resource constraints in edge/embedded environments, it is
desirable to optimize an application’s binary for each target
architecture [67]. While this increases the compilation time
dramatically, the expectation is that this overhead is amortised
over a large number of deployments [67], hence, a compile
once, deploy on many approach is adopted. The underlying
assumption is that the deployment nodes are identical to
the one where the binary is tuned. Our experiments show
that this assumption does not hold even under strict, lab-
environment conditions that explicitly prioritize controlling
variability: when all sources of variability we explore are taken
into account, the observed effect is often beyond a 5% range,
and, sometimes higher than 10%.

This magnitude matters for compile-time optimizations. An
informative data point is provided by a survey by Mytcowicz
et al. [5]: the authors report that the median speedup reported
by 88 out of 133 papers surveyed that are published at top
compiler and architecture conferences (e.g., ASPLOS, PACT,
PLDI, and CGO) was ≈ 10%. Given the magnitude of vari-
ability that we report in this study, without properly accounting
for variability, the improvements reported by these studies
could be lower. To be clear: We do not argue these papers
present incorrect conclusions; we argue that in an area like
compile-time optimizations, where single digit performance
gains are found worthwhile, since these gains are within
the range of variability introduced by the various factors
we characterize - inter-node, temperature, and even intra-
node without variability controls - proper methodology and a
good understanding of variability are necessary for meaningful
conclusions.

The same study presents a second data point: the authors
report O3/O2 speed ups that are generally within the ±5%
range (with few exceptions extending to the ±10%). This is
again a range that is well within the bounds we report on
inter-node variability. This difference, if not accounted for in
the methodology, one can reach a spurious conclusion about
the benefits of one optimization level to another.

Model-based runtime optimization. In edge environments
meeting QoS demands is a primary goal and two factors
stand out: the application’s performance (i.e., responsiveness,
accuracy), and its energy consumption (i.e., battery life) [4].
Gaudette et al. [4] argue that building accurate performance
and power models is essential to inform navigating this trade-
off space.

Past work has experimented with a multitude of models,
from those that brute-force the space (e.g., NeuOS [1] collects
data at all configuration points and uses a lookup table),
to those based on machine learning (e.g., Airavat [3] and

PredJoule [2] employ a learning-based approach that relies
on training models using data collected from a single board
only). Variability matters during model building, and use.

Since generally a model on one node, deploy everywhere ap-
proach is generally taken, it is important to properly character-
ize the space and take various sources of variability (e.g., inter-
node, and temperature) into account when building/seeding the
model. Once a variability characterization is done, this will:
(i) help understand the expected accuracy of the model when
deployed in practice; and, possibly, (ii) lead to a decision to
build models that take variability into account from the start
(e.g., based on collecting data over multiple nodes, and/or
taking temperature into account as a relevant factor). This will
increase the cost of model development and may render some
of the current techniques too costly (e.g., NeuOS [1] based on
brute-forcing the space).

One of the few projects [4], [33], [68] that goes in this
direction is Mirage [69]. On a hardware platform similar to
ours, they show that by accounting for inter-node variability
one can predict runtime and power consumption of DNN
workloads at different frequency settings with up to 15.4%
improvement over models that do not account for it.

In summary, characterizing variability is critical as it in-
forms the developers about: (i) the lowest bound of variability
that they should account for during runtime, and (ii) to what
extent can each category of variability be mitigated. Without
this characterization, wrong decisions during platform and/or
applications’ tuning could be made, leading to QoS violations.

VIII. SUMMARY

We offer a methodology to characterize intra- and inter-
node variability and apply it on two heterogeneous edge
platforms: the NVIDIA Jetson AGX and Nano, for key char-
acteristics: performance and power consumption. Firstly, we
explore intra-node variability: highlight that it is unavoidable,
understand to what degree deployment decisions can limit
it, and offer a scale so that one can compare to what other
studies report. Secondly, we characterize inter-node variability
by answering two questions: (i) Are the platforms we study
statistically different in terms of the applications’ power draw
and runtime performance? and (ii) What is the magnitude of
these differences? Our results show that there is significant
variability in power consumption across boards and moderate
variability in runtime.
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