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Abstract
A common feature of devices deployed at the edge today is their
configurability. The NVIDIA Jetson AGX, for example, has a user-
configurable frequency range larger than one order of magnitude
for the CPU, the GPU, and the memory controller. Key to make
effective use of this configurability is the ability to anticipate the
application-level impact of a frequency configuration choice. To this
end, this paper presents a novel modeling approach for predicting
the runtime and power consumption for convolutional neural net-
works (CNNs). This modeling approach is: (i) effective - i.e., makes
predictions with low error (models achieve an average relative error
of 15.4% for runtime and 14.9% for energy); (ii) efficient - i.e., has
a low cost to make predictions; (iii) generic - i.e., supports deploy-
ing updated and possibly different deep learning inference models
without the need for retraining, and (iv) practical - i.e., requires
a low training cost. Three features, all geared towards meeting
the challenges of deploying in a real-world environment, set this
work apart: (i) the focus on predicting the impact of the frequency
configuration choice, (ii) the methodological choice to aggregate
predictions at fine (i.e., kernel level) granularity which provides
generality; and (iii) taking into account the inter-node variability
among nominally identical devices.
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1 Introduction
Context. The compute capability deployed at the edge enables a
range of applications with strict latency requirements that cannot
be offloaded to the cloud. Real-time decision-making in complex en-
vironments based on computer vision in areas such as autonomous
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vehicles, surveillance cameras, and virtual assistants, is a particu-
larly promising candidate.

To maximize the energy efficiency for applications running on
edge devices (some of which are battery powered), recent hardware
platforms employ heterogeneous processing units and shared mem-
ory supporting a wide range of operational frequencies exposed to
the application developer/deployer. The promise is for more effi-
cient energy use. The cost, however, is the increased complexity
for application developers/deployers, who must explicitly choose
which processing units to target and how to configure them to
meet the application’s Quality of Service (QoS) objectives, while
minimizing energy consumption.
Objective. Our long-term objective is to enable automating this
process for applications employing ML inference at the edge. As
a first step in this direction, the goal of this study is to explore
the feasibility of a prediction engine (for performance and power
consumption) that can be later leveraged to automate the tuning
of the underlying platform to achieve high energy efficiency while
meeting the target QoS objectives. This prediction engine should
be: (i) effective - i.e., predictions have low error; (ii) efficient - i.e.,
predictions have a low (runtime) cost thus enabling online adapta-
tion for dynamic environments/workloads via automated platform
tuning; (iii) generic - i.e., deploying updated and possibly different
deep learning inference models, or using different type of input
data (e.g., changing image resolution) should not require model
retraining, and (iv) practical - i.e., the training cost is not onerous.
Workload. We focus on one workload category commonly de-
ployed on edge devices: convolutional neural networks (CNNs) in
computer vision applications - often used in contexts that have soft
real-time constraints and stringent energy budgets.

This workload choice was motivated by three factors: (i) CNNs
(and AI in general) are at the core of many Edge applications (e.g.,
video surveillance, home automation, remote healthcare) which
would benefit from the ability to make performance and power
consumption predictions, (ii) several industry-backed benchmarks
(e.g., MLPerf [42], EdgeBench [14], AIMatrix [57], MLMark [50],
EdgeAIBench [21]) focus on CNNs and other ML models to bench-
mark edge platforms, and (iii) CNN kernels (e.g., matrix multiply,
convolution) are at the core of several AI/ML applications.

Challenges. Predicting the impact of frequency configuration selec-
tion on runtime and power consumption raises several challenges:

■ The need to quantify the impact of the frequency configuration
choice in a large configuration space, where the choice of the
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configuration has a sizeable, application-dependent, and non-
linear impact on the performance and power consumption of an
application (§2.1).

■ The diversity and frequent evolution of the deployed networks as a
result of: (i) additional labeled data available for training, and/or
(ii) continuous advances in the deep learning field that yield
increasingly robust and accurate networks. As a result, over the
lifetime of a deployed application, models are continuously re-
trained then re-deployed at the edge, and, in some cases, models
are replaced by completely different ones (architecture wise).

■ The variability, in performance and power consumption, between
nominally ’identical replicas’ of edge devices (i.e., devices of the
same hardware model and running the same software stack) (§3.1)
can significantly degrade the prediction quality if not taken into
account during training.

Approach.We summarize our machine learning-based approach
and highlight its distinguishing features:
■ Kernel-level decomposition. Regardless of their specific architec-
ture, CNNs incorporate the same essential building blocks (ker-
nels [30]: e.g., convolution, pooling, batch normalization, matrix
multiply), but differ in how these are used. We explore whether
modeling the performance and power consumption at the ker-
nel level enables generality: that is, whether predictions at the
kernel-level (i) can be made accurately, and (ii) can be aggregated
to obtain accurate network-level predictions for arbitrary CNNs.

■ Kernels extraction.We characterize ten of the most popular CNNs
(e.g., VGG [45], GoogLeNet [46], SqueezeNet [24]) to extract the
kernels which meet two criteria: (i) significance – they collec-
tively constitute the majority of the runtime of an inference task,
and (ii) commonality – they are frequently used across different
networks. Our findings (§3.2) are in line with previous studies [4]
and represent the first quantitative analysis of these CNNs on
the Jetson AGX platform.

■ Training data generation. To collect training data we run the se-
lected kernels against different Dynamic Voltage and Frequency
Scaling (DVFS) configurations and measure their runtime and
power consumption. One of the challenges is the large number of
input parameters - with a wide and continuous range of values -
for these kernels. For example, the 2D convolution kernel requires
nine parameters (e.g., weight shape, padding, dilation, etc.) that
specify the behavior of the kernel, besides the input data shape.
To overcome this challenge we propose a space-reduction tech-
nique (§4.1) that combines random sampling and domain-specific
knowledge.

■ Model training. With this data, we train regression models using
XGBoost [12] and the BOHB [16] optimizer for hyperparameter
tuning (§4.3). A distinguishing feature of our approach is that
we collect training data from multiple nominally identical AGX
boards. This is for two reasons: (i) to expose the model to the
inter-node variability (discussed in §3.1), and (ii) to accelerate
the process of generating training data in a large space (DVFS,
multiple kernels, kernel parameters, and input shapes).

Contributions. The main contributions are as follows:
■ Workload characterization.We characterize the performance of
10 widely used computer vision CNNs on the Jetson AGX (§3.2).

We find that, on average, the Convolution, Matrix Multiply, and
Batch Normalization kernels offloaded to the GPU collectively
account for the majority (>90%) of the inference task runtime
for most of these CNNs. We also find that the runtime of eight
kernels combined represents on average ≈96% of the networks’
inference time.

■ A generic approach to predicting runtime and power/energy con-
sumption for computer vision inference networks.We create kernel-
level machine learning models that can be used to estimate the
runtime and average power consumption for a wide range of
computer vision CNNs (§4). The fact that our approach works at
a kernel level granularity makes it generic as it allows predicting
the runtime and energy consumption of an inference task at the
network level for arbitrary CNNs not seen during training.

■ An evaluation of these models. We evaluate the accuracy of these
models both at the kernel level (§6.1) and at the network level
(§6.2). The kernel-level evaluation (§6.1) shows that the kernel-
level models have low prediction error (e.g., on average 73.92%
and 55.59% of the runtime and power models respectively have
relative error of less than 5%). The network-level evaluation
(§6.2) shows that the network level models are effective (e.g.,
predictions have, on average, a 15.4% error for runtime, and
14.9% for energy). We also evaluate the runtime overhead of
the models (§6.4) and find that they are efficient: i.e., they have
low prediction time overhead compared to the corresponding
kernel runtime. Additionally, the models are practical: the median
training time across all the models is 4.9 hours for runtime (1.4
hours for power). Finally, we quantify the ’cost of generality’
(i.e., modeling at the kernel level). The results (§6.3) show a low
degradation in prediction quality of the kernel-level approach
compared to a network-level approach (on average, the prediction
error increases by 11.76% for runtime and 10.01% for energy).

■ We demonstrate that taking inter-node variability into account
improves the quality of the prediction models (§6.4).We extend a
previous characterization study to strengthen the argument that
inter-node variability is significant for both runtime and power
(§3.1). This motivates us to account for inter-node variability dur-
ing model development (§4). We show that our approach: (i) im-
proves the quality of predictions (e.g., for runtime and power the
root mean square error (RMSE) is improved on average by 9.5%
and 13.6%); and (ii) reduces prediction error variability compared
to a traditional model training approach not taking inter-node
variability into account (§6.4).

■ We describe our experience training performance/power models as
well as lessons learned about the Jetson AGX platform. These are
summarized in §7 and discussed throughout this paper.

2 Background
This section presents two key pieces of background information:
(i) it highlights the large and consequential frequency configura-
tion space of the NVIDIA Jetson AGX boards, and (ii) it presents
background information on convolutional neural networks (CNNs).

2.1 Large frequency configuration space.
The Jetson AGX board is highly configurable overmultiple axes. Key
is the ability to configure the operational frequency over a range
spanning over one order magnitude for the CPU (0.1–2.7GHz), GPU
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Figure 1: Frequency configuration impact on runtime for different
CNNs. The y-axis shows the inference runtime (ms) and the x-axis
shows the configuration identifier. The configurations are sorted in
ascending order using CPU, GPU, and memory frequencies as sort-
ing keys, then the runtime for each 100𝑡ℎ configuration is plotted.
The fact that the 𝑥-axis linearizes the three dimensional frequency
configuration space explains the ’spikes’ visible in the plot.

(0.1–1.4GHz), and the memory controller (0.2–2.1GHz) in discrete
steps. This leads to a large configuration space with ≈3.6𝐾 unique
combinations (i.e., frequency configurations) each with different
performance and power characteristics. Other edge platforms offer
similar configurability features (e.g., Raspberry Pi), however, what
differentiates the Jetson AGX board (as well as other boards from the
NVIDIA Jetson line) is the large 10− 20× dynamic frequency range
(e.g., compared to an up to 3× range for most Intel processors). We
note that making good choices in the frequency configuration space
is: (i) important. This is highlighted by the large application-level
performance (and power) impact of the configuration choice (over
10×); and (ii) non-trivial. This is highlighted by the fact that this
space not ’smooth’ and that frequency configuration changes have
different impact on different applications. Fig. 1 presents visually
some of these observations.

2.2 CNNs: structure and kernels.
Convolutional neural networks (CNNs) [28] are a class of deep neu-
ral networks (DNNs) specialized for multimedia (e.g., image [27],
video [44], and speech [2]). CNNs are used for image/video analysis
(e.g., object detection [10], recognition [27], semantic segmenta-
tion [39]) where they have proven to be versatile and effective. They
also represent the core building blocks of several edge benchmarks
(e.g., MLPerf [42], EdgeBench [14], MLMark [50]).

A DNN’s main building block is a feed-forward neural layer.
Typically, a DNN consists of a single input and a single output
layer in addition to one or more hidden layers in-between. Each
layer consists of multiple neurons. A neuron is modeled as a linear
mathematical function that multiplies its inputs (𝑋𝑖 ) by certain
weights (𝑊𝑖 ), and adds biases (𝐵𝑖 ). To model non-linear systems, a
non-linear activation function 𝑓 is applied on the neuron’s output.
A single neuron equation can be represented as:𝑌𝑖 = 𝑓 (𝑋𝑖 ∗𝑊𝑖 +𝐵𝑖 ).

The most common type of layer in DNNs is a fully-connected
layer in which each neuron is connected to all the neurons from
the previous layer. The word ’deep’ in DNN refers to the number of
hidden layers. Adding more layers can improve network accuracy

but it increases the complexity of the learning process dramatically.
CNNs take a different approach by reorganizing the hidden layers

as 2D filters. These filters typically have small dimensions (e.g., 3×3)
compared to the input image, and are applied across the input image
(i.e., left to right and top to bottom); thus, extracting featuremaps for
each patch of the input image. Applying these 2D filters to patches
of the input image involves element wise multiplication between
the filters’ weights and input pixels’ values (i.e., convolution). In
traditional computer vision systems, convolution filters’ weights
were hand-crafted by experts to extract certain distinctive features
(e.g., edges, corners, texture). In modern CNNs the network learns
the weights of the convolution filters during the training process
without the need for domain-specific expertise.

Generally, a simple CNN incorporates a permutation of 𝑛 feed-
forward layers. The dominant types of layers in CNNs are:

■ Convolution layer – the main building block for CNNs, where
most of the computations occur. In this layer, a convolution kernel
is applied to the input image to extract certain features. Then a
non-linear activation function, e.g., a Rectified Linear Unit ReLU,
is applied to the output of the convolution operation to introduce
non-linearity to the model.

■ Pooling layer to: (i) reduce the space of the input feature map
from the convolution layer, (ii) extract the dominant feature
from the feature map, and (iii) handle translation invariance
and noise. There are several kernels to apply pooling, such as:
MaxPool (gets the maximum value from a 2Dmatrix),AveragePool
(calculates the average value of all elements of a 2D matrix),
and AdaptiveAvgPool (similar to AveragePool but with variable
padding and stride size applied to the 2D input to maintain a user
specified output size).

■ Fully-connected layer used after extracting features using the con-
volution and pooling layers to flatten the output to a 1D feature
vector. This vector is now a suitable input for a traditional fully-
connected layer of neurons that learns to classify the different
input feature vectors to their corresponding classes based on
the training data. In the fully-connected layer, the input feature
vector is multiplied using the matrix multiply (MatMul) kernel
by the learned weights, and the offset is added using the Add
kernel before applying a SoftMax activation function to classify
the feature vector to a certain class.

We focus on ten of the most popular CNNs (Squeezenet, AlexNet,
MobileNetv2, MNASNet, ResNet, ShuffleNetv2, GoogLeNet, Incep-
tion3, VGG, and DenseNet) as implemented by the Torchvision [33]
library (details in §5.2).

3 Characterization Studies

This section presents two characterization studies that motivate
the decisions we make when developing our methodology: (i) a
variability characterization which highlights the existence and the
magnitude of variability amongst nominally identical Jetson AGX
boards, and (ii) a workload characterization which uncovers the
main building blocks (i.e., kernels) of frequently used CNNs.
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(a) Relative difference percentage 𝑅𝐷 for the runtime.

(b) Relative difference percentage 𝑅𝐷 for the power consumption.

Figure 2: Relative difference percentage 𝑅𝐷 values for runtime and power consumption for two pairs of CNNs that manifest mid (left) and
highest (right) runtime inter-node variability (respectively, lowest and highest for power). The x-axis shows the node ID (AGXboard identifier),
and the y-axis indicates the relative difference percentage between observations and the median of medians. The three boxplots per node
represent the lowest, midst, and highest frequency configurations (in gray, white, and black respectively). The legend on top of each plot
shows the absolute value for the median of medians for each configuration. For each boxplot, the top and bottom sides represent the first and
third quartiles (Q1 and Q3). The horizontal line represents the median (Q2). The top/bottom fences indicate the top/bottom deciles (i.e., 10%
and 90% thresholds of the distribution).

Figure 3: Intra-node variability characterization for 13 nodes, de-
picted using the boxplot of the relative difference percentage 𝑅𝐷
(y-axis) between multiple measurements, and the median value for
different CNNs (x-axis) on a per-board basis. The boxplots present
the same thresholds as in the previous figure.

3.1 Variability characterization.1

Background.We define variability as a significant difference be-
tween measurements of metrics of interest (e.g., runtime and power
consumption) under the same constraints (e.g., workload, software
stack, hardware platform). Variability can be of two types:
(i) intra-node - i.e., variability over time for an application deployed

on a single board (i.e., node). Possible sources are: (i) interfer-
ence with operating system services or other applications, (ii)
initialization differences, and/or (iii) ambient context [19, 55]

1This subsection summarizes and extends a previous workshop publication [3]. Com-
pared with this workshop publication, this subsection: (i) provides increased confidence
- 100× larger measurement samples; (ii) compares to intra-node variability; and (iii)
uses more CNNs.

(e.g., temperature leading to CPU throttling).
(ii) inter-node - i.e., variability across several identical (i.e., same

software and hardware) boards. Possible sources are: (i) manu-
facturing process variation and/or (ii) hardware components’
aging [20, 34].

While the existence of variability is well-known [19, 55], with the
exception of Large-scale and High-Performance Computing (HPC)
environments [15, 26, 54], inter-node variability has often been ig-
nored at the edge as it is assumed to be negligible with no significant
impact on the target applications.

Objective. We aim to: (i) quantify the inter-node variability
among several nominally identical Jetson AGX boards; and (ii) com-
pare inter- and intra- node variability to highlight their significance
from an application perspective.

Terminology. We define a frequency configuration as a unique
combination of CPU, GPU and memory controller frequencies. For
each frequency configuration, each workload, and each board, we
collect a measurement sample as a set of N observations.

Methodology.We collect runtime and power consumption mea-
surement samples for the inference task for 10 CNNs (§3.2) on 13
nominally identical Jetson AGX boards (§5) for about 500 frequency
configurations chosen to uniformly sample the entire configuration
space. After discarding warm-up runs, each measurement sample
has 10,000 observations for both runtime and power. We take all
precautions to eliminate the impact of other factors (e.g., software
stack version, application interference, temperature, fan) on our
measurements (§5.2).

Results.We have confirmed [3] using statistical tests (K-samples
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AndersonDarling [43] and Two-samples Kolmogorov-Smirnov [23])
that, for a majority of the configurations, the boards are statistically
different (i.e., runtime and power observations for different boards
come, with high confidence, from different distributions). Rather
than presenting a summary of these tests, here we focus on a visual
presentation as we find it more effective to convey the presence of
inter-node variability and indicate its magnitude.

We focus on three frequency configurations representing the low,
middle, and high points of the frequency range. For each frequency
configuration and workload, we group the data per board and cal-
culate the median value of the corresponding measurement sample.
Then we calculate the median of medians to have a reference value
for each metric we consider. Finally, for each sample, we plot the
relative difference percentage (𝑅𝐷) between each observation in
the measurement sample and the reference value as boxplots.

Due to space limitations, we only plot two CNNs for each of
runtime and power. For runtime, we rank CNNs by the observed
inter-node variability and Fig. 2a presents the inter-node variability
for MnasNet (mid-range) and ShufflenetV2 (highest variability). For
power, inter-node variability is visible for all CNNs: Fig. 2b presents
the extremes: VGG (lowest) to ShuffleNetV2 (highest variability).

The plots highlight that the runtime/power observations for dif-
ferent boards are (likely) drawn from different distributions. This
is evident for power (Fig. 2b), where even the median of the obser-
vations vary among the 13 boards between about 20% (for VGG)
to over 30% (for ShuffleNetV2) of the reference value. For runtime
(Fig. 2a) the differences are less pronounced but still visible with the
naked eye: focus on ShuffleNetV2’s runtime for example; here the
variation among boards is up to 10% of the reference value for the
top quartile threshold, and up to 25% for the top decile threshold.

Finally, Fig. 3 highlights that intra-node variability is much lower.
Each boxplot in Fig. 3 aggregates 130k observations for a CNN at
one frequency configuration point. The reference value is themedian
of the observations of the measurement sample of each node.

The key takeaways from this variability characterization study
are: (i) inter-node variability on the Jetson AGX is significant (and
particularly large for power consumption), hence it must be ac-
counted for when building a generic prediction engine; (ii) inter-
node variability is significantly larger than intra-node variability;
and (iii) the magnitude of the variability is workload dependent
(i.e., it changes depending on the target CNN), which, we speculate,
is a result of each CNN stressing different hardware components
(e.g., CPU, GPU).

Lastly, while we characterize variability on the Jetson AGX and
highlight its impact as a challenge in realistic edge deployment
scenarios, a logical next step of this characterization is root-cause
analysis. Hence, as part of our future work, we plan to extend the
characterization study to investigate different factors that might be
contributing to this variability (e.g., workload characteristics, state
initialization effect, certain frequency ranges, etc.).

3.2 Workload characterization.
Objectives. Our primary goal is to characterize the workload gen-
erated by CNNs, that is, to quantify the runtime contribution of
the underlying computational kernels to the end-to-end network
inference task. Our secondary goal is to understand whether there
exists a small group of kernels that are common across all CNNs

and generate most of the load.
Methodology. We place custom probes in PyTorch’s [40] source

code to extract the kernels that each CNN launches, along with
their parameters (e.g., convolution kernel stride and padding sizes)
and input shapes (see §5 for details). We tune the 13 Jetson AGX
boards to the maximum frequency configuration, and collect the
total runtime for each kernel launched by each CNN (as a measure-
ment sample of 100 observations per board). Then, we calculate the
median (which is less susceptible to outliers compared to the mean)
per board, and finally, we calculate the median of medians (across all
boards). The result is used as the absolute runtime contribution of
each kernel 𝑇𝐾𝑖 to the network’s inference time. Finally, we collect
a runtime measurement sample for each CNN on each board, and
similar to the kernels, we calculate the median of medians across
all boards to represent the network’s inference time 𝑇 .

Kernel selection is carried out in two phases: the first one picks
the kernels that collectively represent a large majority (≥ 95%) of
the runtime for each network, and the second one picks the kernels
that appear in at least 40% of the studied networks. The first phase
prioritizes the runtime contribution of the kernels (i.e., significance).
The second phase makes sure that these kernels are common. As
such, they are useful for other vision-based ML applications and
not specific to the networks we analyzed (i.e., commonality).

Results. The number of unique kernels that are run by each
network varies from 7 (SqueezeNet) to 16 (InceptionV3), while
the number of kernel launches varies from 28 (AlexNet) to 580
(DenseNet). Table 1 details the runtime contribution of each kernel.
The 2D convolution kernel is called in all networks and it has the
largest mean value (last row) of the runtime contribution percent-
age, followed by the 2D batch normalization and matrix multiply.
The percentages highlight the significance of each kernel and are
broadly in line with similar studies on other platforms [4, 30].
𝑇𝑘 is the runtime summation of the selected kernels (i.e., the most

common and significant ones), and𝑇𝑘′ is the runtime summation for
the left-out kernels (i.e., the kernels that have a minor contribution
to each network’s end-to-end inference time).𝑇 represents the end-
to-end network inference time as measured from the high-level
code (i.e., the 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 () method) in the PyTorch framework.

The 𝑇𝑘
𝑇

column highlights that the selected kernels represent,
on average, ≈96% of the inference time. With the exception of
ShuffleNetV2, the minimum value for 𝑇𝑘

𝑇
is 97.43%. 2 Percentages

tend to be greater than 100% due to the overhead associated with
timing each kernel individually versus timing the network inference
time as a single black box.

Note that among the left out kernels, not included in Table 1,
is the FusionGroup kernel. FusionGroups are CUDA kernels that
replace one or more of the target network’s computation graph
nodes (e.g., a node represents an operation such as Conv2D, or
MatMul). They are created during the GraphFuse optimization pass
within the PyTorch Just In Time (JIT) compilation step (see §5.2 for
more details). In 70% of the networks we studied, the FusionGroup
replaces a single call of the 2D batch normalization kernel. Hence,
𝑇𝐾 ′ is representative of the left-out kernels even without these.

2By inspecting the NVIDIA Profiler tool [37], we found that all the GPU compute
kernels, and data transfer operations consume ≈43% of ShuffleNetV2’s inference time,
and we believe that the rest of the inference time is spent on the CPU.
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Table 1: The runtime contribution and breakdown of the selected and left-out kernels. Each row corresponds to a specific network. The
columns from 2 to 9 show a kernel’s runtime percentage of the total network inference time. Cells with a ’-’ value indicate that the kernel
was not called in the respective network. 𝑇𝐾 and 𝑇𝑘′ are the summations of the runtimes for the selected and left-out kernels respectively. 𝑇
is the network’s inference time (measured end-to-end). The last row shows the mean across all networks. The kernels (columns 2 to 9) are
sorted based on the mean values (last row) of their contribution percentage to the networks’ inference time.

Selected kernels contribution to inference time (%) All kernels runtime breakdown (ms and %)
Network Conv2D

Batch
Norm2D

Matrix
Multiply Relu Cat

Max
Pool2D Add

Adaptive
Pool2D 𝑇𝐾 (𝑚𝑠) 𝑇𝐾 ′ (𝑚𝑠) 𝑇 (𝑚𝑠) 𝑇𝐾

𝑇
(%) 𝑇𝐾

(𝑇𝐾 +𝑇𝐾′ ) (%)
𝑇𝐾 +𝑇𝐾′
𝑇

(%)

Alexnet 45.26 - 55.88 1.68 - 1.18 0.36 0.49 4.76 0.004 4.54 104.81 99.92 104.89
Densenet 84.64 9.38 0.17 5.28 5.32 0.16 0.01 0.04 54.68 0.139 52.09 104.98 99.75 105.25

GoogeLeNet 78.06 6.75 0.48 5.29 2.22 4.57 0.05 0.12 9.23 0.009 9.46 97.54 99.90 97.64
Inception3 89.93 6.55 0.33 4.18 1.61 0.87 0.19 0.07 26.44 0.895 25.50 103.66 96.73 107.17
Mnasnet 66.77 22.44 1.24 11.00 - - 1.91 - 4.63 0.020 4.47 103.41 99.57 103.86

MobileNetV2 66.67 27.29 1.28 - - - 1.85 0.31 4.16 0.587 4.27 97.43 87.64 111.17
Resnet 95.99 4.83 0.38 3.37 - 0.83 1.72 0.12 7.51 0.006 7.00 107.25 99.91 107.34

ShuffleNetV2 24.61 8.11 0.72 4.57 4.06 0.40 0.07 - 2.69 0.066 6.32 42.53 97.60 43.58
Squeezenet 78.00 - - 10.36 6.52 4.31 - 0.42 4.04 0.001 4.06 99.58 99.97 99.61

VGG 83.61 - 15.09 2.58 - 1.09 0.04 0.10 37.58 0.004 36.62 102.60 99.99 102.61
Mean 71.35% 12.19% 8.40% 5.37% 3.95% 1.68% 0.69% 0.21% 15.57 0.173 15.43 96.38 98.10 98.31

A key takeaway from the workload characterization study is
that eight kernels (convolution, batch normalization, matrix multi-
ply, relu, cat, max pool, add, and adaptive average pool) represent
on average ≈96% of the CNNs runtime on the Jetson AGX platform.

4 Modeling Methodology
While the main components of our methodology are largely main-
stream, compared to prior work (§8), our runtime/power model-
ing methodology puts forward three innovations: (i) working at a
kernel-level granularity, which makes the developed models generic
in the sense that new CNNs can be modeled without retraining; (ii)
taking into account the existing inter-node variability (§3.1) which
increases the prediction quality of the developed models (§6.4; and
(iii) the space sampling methodology to efficiently generate test
data (§4.2).

4.1 CNNs’ analysis and kernel extraction.
A key first step is to select the most significant and common ker-
nels. §3.2, discusses our methodology to identify the kernels that
meet these criteria. The main intuition is that if we model the se-
lected kernels, we can aggregate their runtime and power/energy
consumption predictions to obtain network-level estimates.

4.2 Training data generation / pre-processing.
Each compute kernel (e.g., MatMul, Conv2D, ReLU) has three rele-
vant features: (i) input characteristics - the shapes of the tensors
usually manipulated by the kernel, and the precision of the indi-
vidual tensor elements, e.g., FP16 or INT8; (ii) kernel parameters
that specify the behavior of the kernels (e.g., stride size for the
convolution kernel), and (iii) implementation algorithms. For ex-
ample, in PyTorch the 2D convolution kernel has nine parameters.
Depending on the values of these parameters and the input shape,
the underlying cuDNN [13] library chooses a specific implemen-
tation/algorithm [30]. Hence, the complexity of modeling these
kernels becomes a challenge given that we need to account for
the continuous ranges for the input shapes and kernel parameters,
and for several underlying implementations. To overcome this chal-
lenge we: (i) create implementation-agnostic models based only on
the input characteristics and kernel parameters, and (ii) reduce the

space for the inputs and kernel parameters during model training.
We designed a domain-specific space reduction technique for

the inputs and kernel parameters with the goal of decreasing the
training time, and improving the overall prediction quality. For
all kernels, we summarize the ranges of input shapes, and kernel
parameters seen for all of the networks listed in Table 1 based on
profiling during the characterization experiments. We then create
a range that covers all values obtained during profiling, which gets
sampled randomly when generating training and testing data. For
example, assuming that in the 10 networks the input matrices of
the MatMul kernel have a number of columns that mostly fall in the
range [1𝐾, 4𝐾], then we randomly pick values from [1𝐾−𝑒, 4𝐾+𝑒 ′],
where 𝑒, 𝑒 ′ are margin values that slightly extend the range beyond
the minimum and maximum values. This range extension exposes
the learning algorithm to data points that might be seen in similar
networks but do not appear in our CNN characterization study.

There is a trade-off between the training time and the 𝑒, 𝑒 ′margin
values. This trade-off impacts the generality and accuracy of the
trained models. On the one side, choosing a larger range increases
the generality of the model and the chance that the model will
perform well on data points not seen during profiling. On the other
side, it requires expanding the training data size (leading to longer
training time) to make sure that the space is sampled sufficiently
for the model’s accuracy to be reasonably high. Finally, any outliers
(e.g., 32 and 25K columns in the MatMul) are added to the space as
additional ranges [25𝑘 − 𝑒, 25𝑘 + 𝑒 ′], and [32 − 𝑒, 32 + 𝑒 ′] (instead
of a single extended range [32 − 𝑒, 25𝑘 + 𝑒 ′]). The input tensors
are filled with random FP32 numbers from the standard normal
distribution (i.e., mean=0, variance=1).

The only data pre-processing steps we apply to the training and
testing data are removing redundant/dependent features (e.g., first
input matrix columns and second input matrix rows in MatMul
kernel), and log-transforming the target label (runtime and average
power) to avoid negative-valued predictions.

For the convolution kernel, there are nine different parameters,
which reduces the probability of randomly generating the combi-
nations that are seen in real-world networks. We use the weighted-
sampling technique used in imbalanced learning problems [22] to
sample the training space. This technique either picks a random
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combination of kernel parameters or a real-world one (i.e., seen in
any of the CNNs we study) with a 50% chance each.

Discussion. On the one side, our approach enables: (i) building
a practical model as there is no dependency on extra tools, such
as the NVIDIA profiler, to extract the underlying CUDA kernels,
and (ii) easily being extended to other frameworks that use similar
high-level APIs (e.g., TensorFlow [1]). Finally, limiting the value
space for the input shapes and kernel parameters based on data
extracted from real-world networks and workloads exposes the
trained models to representative data and yields accurate predic-
tions.

On the other side, this approach has two potential drawbacks:
(i) adopting an implementation agnostic path discards features that
might be useful when modeling the kernels, that is, which algo-
rithm is going to run given a certain input and kernel parameters.
(Exposing this feature, however, requires deep expert knowledge
with the libraries or low-level profiling using the NVIDIA tools),
and (ii) reducing the space for the inputs and kernel parameters
limits the model’s exposure to a wider range of values, and limit its
generality if non-representative values are used during training.

4.3 Model training and tuning.
Background. We use XGBoost [12] to build the runtime and aver-
age power consumption models. XGBoost is a scalable and portable
implementation of gradient tree boosting [17], a widely used tech-
nique in regression and classification problems [12]. Boosting is an
ensemble-based technique that constructs a strong learner by ag-
gregating multiple weak learners (e.g., regression trees) to achieve
better performance based on a certain loss function [18, 25, 35, 41].
A gradient descent algorithm is used to minimize the loss before
adding a new weak learner.

XGBoost encompasses several hyperparameters that influence a
trained model’s performance. There are several statistical methods
to tune hyperparameters such as grid search, random search, and
Bayesian optimization. We use a variant of Bayesian Optimization
with HyperBand search (BOHB) [16, 29]. Bayesian optimization
(BO) builds a probabilistic model of an objective function using
the observed points. Hyperband uses the notion of a budget to
evaluate the objective function. As the budget increases, the training
time increases. Examples of the budget include the number of:
epochs, training samples, and estimators. Hyperband evaluates
the objective function on small budgets first, to eliminate non-
promising configurations early, then the best configurations are
evaluated on larger budgets.

Training procedure.To address inter-node variability (discussed
in §3.1) and to accelerate data collection, we collect training and
testing data from 13 nominally identical Jetson AGX boards for each
of the eight kernels we select for modeling. We split the 13 boards
into two groups: (i) training (11 boards), (ii) testing (2 boards).

For each kernel, we collect a different number of data points
(which differ in the frequency configuration used as well as the ker-
nel inputs). The number of data points we collect for each kernel is
directly proportional to two factors: (i) the significance of the kernel
- to enhance the accuracy of the kernels that make up most of the
networks’ inference task runtime and energy consumption, and (ii)
the number of parameters the kernel has - to expose the models to
more data ranges. For example, for the convolution kernel runtime

Table 2: A brief summary of the XGBoost hyperparameters tuned
during the training process [56].

Parameter(s) Type Range
n_estimators Integer [100, 3000]
max_depth Integer [5, 11]
min_child_weight Integer [5, 8]
subsample/colsample_bytree Float [0.8, 1]
learning_rate Float (log scale) [0.005, 0.1]
reg_alpha/reg_lamda Float (log scale) [0.0001, 0.01]

Table 3: NVIDIA Jetson AGX specifications as reported by the OS
and collected from the relevant documentation [47].

AGX Platform
CPU 8-core ARM v8.2 64-bit CPU

Architecture ARMv8-A
L1d/L1i/L2/L3 Cache 64KB/128KB/2MB/4MB
Min/Max Core Frequency Range 115.2MHz → 2.265GHz
Peak Theoretical FLOPS 144.96 GFLOPS

GPU Volta: 4 TPCs | 8 SMs | 512 CUDA Cores | 64 Tensor Cores
L1/L2 Cache 128KB/512KB
Frequency Range 114.75MHz→ 1.377GHz
Peak Theoretical FLOPS 1.4 TFLOPS

DRAM 16GB LPDDR4x (2133MHz, 2 Channels)
Data Bus Width 256bit
Min/Max EMC Frequency Range 204MHz → 2133MHz
Peak Theoretical Bandwidth 136.512 GB/sec

model (that has nine input parameters), we collect ≈1,400,000 data
records, while for the matrix multiply runtime model (that has two
input parameters), we collect ≈150,000 data records only.

We employ leave-one-out cross-validation to tune the models’
hyperparameters. In this technique, the input training data is split
into two groups: (i) training (ten boards), and (ii) validation (one
board). We further change boards 10 times per hyperparameter
tuning iteration to cover all boards, so that each board is chosen
as a validation board exactly once. The evaluation results of the
cross-validation steps are averaged to summarize the quality of the
hyperparameters being evaluated at the current hyperparameter
tuning iteration. This average value drives the BOHB hyperparame-
ter tuning algorithm to find the best fitting set of hyperparameters.

There are several hyperparameters that highly influence the
accuracy and complexity of XGBoost regression and classification
models. Table 2 reports the hyperparameters we tune using BOHB
and the ranges from which their values are chosen. This table can
be used to reproduce the models developed in this paper, and it
indicates the large size of the hyperparameter tuning space.

5 Experimental Setup Details

5.1 Hardware.
The Jetson embedded computing family combines NVIDIA’s GPUs
with low-powered ARM CPU cores in a shared-memory architec-
ture. NVIDIA regularly updates their Jetson platform to include
their most advanced GPU and ARM cores as well as to add new
processing elements (e.g., Deep Learning and Programmable Vision
Accelerators). We focus on the most powerful Jetson platform, the
AGX. Table 3 summarizes its technical specifications. We built a
cluster of 13 Jetson AGX boards (same vendor model/SKU).

The CPU, GPU, and memory controller can operate at 29, 14, and
9 frequency scaling levels (see Table 3). This brings the frequency
configuration space to ≈3.6𝐾 combinations.
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5.2 Software
We install the latest NVIDIA JetPack SDK version 4.4 on all boards.
The SDK incorporates the latest Linux OS for Tegra and driver
package (L4T v32.4.6) for the Jetson platform. Moreover, it has a
full set of optimized software libraries (e.g., CUDA v10.2) to build
applications targeting the various on-board processing elements
(e.g., GPU, deep learning and vision accelerators).

Machine learning: PyTorch Framework.We use PyTorch [40]
(v1.6) one of the most popular deep learning frameworks. The core
functionality is implemented in C++ and exposed as Python C++
extensions to the users (i.e., LibTorch).

PyTorch has two operational modes: (i) Eager Execution which is
suitable for research, debugging, and prototyping, and (ii) Scripting
well-suited for performance-sensitive scenarios (e.g., production
deployments). In the Scripting mode, PyTorch code is translated
to TorchScript - a statically-typed subset of the Python language
and intermediate representation (IR) - via the PyTorch just-in-time
(JIT) compiler. The JIT first converts the PyTorch code to a graph
representation, and then applies several optimizations (e.g., Fusing
operations, eliminating dead code) before emitting the optimized
TorchScript IR. The generated IR is decoupled from Python - avoid-
ing some of its performance disadvantages such as multi-threading
performance issues, and the global interpreter lock (GIL) - and can
be run from C++ for performance sensitive deployments. To exe-
cute a TorchScript IR, the JIT module compiles the IR to a bytecode
representation, which is run in a stack-based Virtual Machine (VM).

Our profiling in TorchScript.We placed custom probes in the
VM’s interpreter that executes the TorchScript IR code to collect
the information for our modeling. There are two reasons why we
decided to place these probes in the interpreter: (i) it allows us to cap-
ture the actual operations run by the interpreter post-optimizations,
so we do not have to worry about internal optimizations (e.g., fusing
operations) or decomposition (e.g., for the Linear layer to separate
the MatMul and Add tensor operations) that might occur; and (ii) it
provides a single point at which we can extract the operations (e.g.,
Convolution, MatMul), their kernel parameters and input charac-
teristics (e.g., count and shape) regardless of the target network.

Machine learning: Pre-trainedCNNs.Weuse Torchvision [33]
version 0.8, to load the pretrained CNNs used in the experiments.
Torchvision is a popular machine-vision package - compatible with
and part of the PyTorch project - that encompasses popular data
sets, models, and image transformations to process visual data.
All classification CNNs included in Torchvision are trained and
optimized on the 1000-class ImageNet dataset. Each vision net-
work accepts inputs of a specific size (i.e., 4D Tensor). We generate
shape-compatible input tensors (filled with randomly generated
FP32 numbers in the range [0, 1]) for each network to be used as
an inference task’s input. This imitates 3-channel input images typ-
ically used in the classification tasks of these CNNs. We study ten
networks: AlexNet, GoogLeNet, ResNet, MobilenetV2, MNASNet,
SqueezeNet, ShuffleNetV2, DenseNet161, VGG16, and InceptionV3.

5.3 Data Collection: Runtime and Power
Timing measurements. We use the CUDA Events system [48]
for measuring the networks’ inference time (0.5µs resolution). We
discard the first few warm-up iterations before performing our

analysis.
Power measurements. For accurate power measurements, we

leverage the two on-board INA3221 [49] (0.5% error) PowerMonitor-
ing Units (PMU) that can be read via an exposed virtual file system
(i.e., sysfs). PMUs have six power ’rails’ (for CPU, GPU, memory
module, computer vision (CV) accelerator, auxiliary on-chip com-
ponents, system IO) which measure the power each component
draws. We discard the CV accelerator and system IO rails as they
are not relevant to our experiments.

Size of measurement samples. For each measurement we col-
lect multiple observations. For runtime, each measurement sample
contains 105 observations (the first five are discarded as warm up).
For power, each measurement sample contains 60 observations, and
we discard the first 10. The median of each measurement sample is
then used for modeling and evaluation.

5.4 Controlling the environment
Eliminating other sources of variability.We create a power pro-
file using the NVIDIA nvpmodel tool that is supplied with the Jetson
AGX software stack. This profile fixes the frequencies of the other
unused board components (e.g., CV and deep-learning accelerators),
ensures that all CPU cores and GPU Texture Processing Clusters
(TPC) are on all the time, and disables the power gating mechanism
that turns some cores off when idle. We also disable the system’s
default DVFS functionality and set all components to the 𝑢𝑠𝑒𝑟𝑠𝑝𝑎𝑐𝑒
governor (which allows us to set the frequencies manually). More-
over, we disable all non-essential OS services running on the boards.
Finally, we use the same software stack (e.g., OS, drivers, libraries,
etc.) on all boards.

Avoiding thermal throttling. The boards are placed within the
same physical rack, hence, they are all in an environment with the
same ambient temperature. According to the latest NVIDIA Jetson
AGX thermal design guide [36], the maximum operating temper-
ature limits (to operate without performance reduction) for the
CPU, GPU, and other components are 86, 88, and 82°C respectively.
Above these temperatures software or hardware throttling will re-
duce runtime frequencies to avoid overheating, thus reducing the
board’s performance and degrading the reliability of the results. We
monitor the on-board temperature sensors to make sure the boards
do not enter any thermal throttling zones. Also, we continuously
operate the fan at its maximum speed (it usually starts operating at
≈50°C).

6 Results and Analysis
Evaluation metrics.We use six metrics to evaluate the prediction
models we develop. The first four represent the percentage of pre-
dictions that have relative error lower than a certain threshold (e.g.,
5%). The last twometrics are the root mean square error (RMSE) and
mean absolute error (MAE) in milliseconds, watts, joules for run-
time, power, and energy respectively. We use these multiple metrics
to acquire different views of the quality of the models’ predictions.
Both MAE and RMSE are commonly used in evaluating regression
models: MAE gives an unbiased view of the average absolute error,
and RMSE places a higher weight on large errors (i.e., penalizes
large errors). Thus, both metrics can indicate which models are
good candidates for further improvement (e.g., by collecting more
training data, or more hyperparameter tuning iterations).
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Table 4: Accuracy of kernel-level runtime predictions.
Kernel 5% 10% 15% 20% RMSE (ms) MAE (ms)

Conv2d 65.15 82.11 89.97 93.89 12.615 2.785
Batchnorm2d 85.02 95.77 98.11 99.00 0.309 0.121
Matmul 95.25 98.75 99.55 99.76 0.091 0.048
Relu 85.39 95.85 98.04 98.83 0.322 0.135
Maxpool2d 58.52 85.04 93.50 96.60 0.339 0.109
Adaptivepool2d 72.97 92.59 97.13 98.66 0.037 0.015
Add 79.69 92.07 95.85 97.56 0.036 0.007
Cat 49.36 77.00 88.55 93.66 0.336 0.121
Mean 73.92 89.90 95.09 97.24 1.761 0.418

Table 5: Accuracy of kernel-level power predictions.

Kernel 5% 10% 15% 20% RMSE (W) MAE (W)
Conv2d 47.08 78.57 91.06 95.61 1.229 0.676
Batchnorm2d 61.68 88.52 92.91 95.40 1.114 0.637
Matmul 72.12 95.68 98.70 99.44 0.566 0.387
Relu 71.10 94.28 97.20 98.18 0.606 0.371
Maxpool2d 57.09 83.94 90.76 94.04 1.209 0.698
Adaptivepool2d 43.95 80.86 93.47 97.80 0.345 0.276
Add 45.39 78.43 91.44 96.68 0.671 0.389
Cat 46.28 74.14 85.80 92.50 1.324 0.747
Mean 55.59 84.30 92.67 96.21 0.883 0.523

The percentage of predictions with errors lower than a certain
threshold allows us to: (i) more intuitively compare the accuracy of
the models between different kernels as well as between runtime
and power (as opposed to using the RMSE and MAE values which
are averaged metrics), (ii) give a better sense of the magnitude
of the prediction error as the absolute values for RMSE and MAE
become less relevant when predicting over a space with values that
span multiple orders of magnitude (as it is the case when exploring
the entire frequency configuration space); and (iii) more directly
map performance of the models to QoS requirements.

6.1 The quality of kernel-level predictions
For each of the eight kernels selected for modeling (§3.2), we train
models to predict runtime and power (Tables 4 and 5).

The testing data size differs based on the kernel being evaluated.
But, as a rule of thumb, given that we uniformly sample the space
(frequency configurations and kernel parameters) and that we ded-
icate 2 nodes out of 13 for model evaluation, the test data size is
usually ≈18% of the total data collected. By dedicating two nodes
for evaluation, we make sure that the training data never include
any measurement samples from these two nodes. The median of
each sample is used as the representative ground truth value to
calculate the error rates reported in Tables 4 and 5.

We make two key observations from the results presented in
Tables 4 (runtime) and 5 (power): first, the predictions are accu-
rate: for example, on average (i.e., across all kernels) ≈89.9% of the
predictions for the runtime (≈84.3% for power), have errors lower
than 10%. Second, even though the convolution kernel runtime
model has the largest training dataset (≈1, 400, 000 measurement
samples), it has lower accuracy than the average kernel. This is due
to two factors: (i) the complex nature of the convolution kernel -
for example, the NVIDIA cuDNN library [13] used by PyTorch to
implement the convolution kernel, chooses between seven different
implementations depending on the kernel parameters and input
shape, and (ii) the large parameter space that needs to be sampled.

6.2 The quality of network-level predictions
To make runtime network-level predictions, we use the profiling
data gathered during network characterization (§3), we then predict
the runtime for each kernel invocation (for the kernels we build
models for), and we sum up these values. To evaluate runtime
models, we compare the predicted runtimes against the median
value of the observed runtimes collected on two boards. To evaluate
the power models at the network-level, we need to consider that
kernels unevenly contribute to the networks’ power consumption.
Thus, instead of estimating the network-level power consumption,
we estimate the network-level energy consumption by summing up
the modeled kernels’ energy consumption (product of the predicted
runtime and power). Then, we compare the estimations against the
observed network-level energy consumption.

Fig. 4 highlights the prediction accuracy for runtime (top) and
energy (bottom). The figure shows the relative error (compared to
observed network runtime/energy consumption) for our predictions
and two baselines:
■ Our prediction (left, grey bars in Fig. 4 – labeled Inference Pre-
diction). This indicates the relative error of our network-level
predictions obtained by aggregating individual, kernel-level pre-
dictions.

■ Selected kernels observed runtime/energy (center, white bars) pres-
ents the relative (%) error 𝑅𝐸 between the sum of the selected
kernels’ observed runtime/energy and the observed network infer-
ence level runtime/energy. This indicates how close aggregating
the kernels’ metric of interest (i.e., runtime, energy) measure-
ments is to the network-level inference measurements. The rea-
son to include this baseline is to separate the different sources of
error: for this baseline, errors arise because only a selected num-
ber of kernels are considered (and no prediction errors impact it).
This baseline represents an idealized outcome for our technique
based on kernel-level decomposition and kernel selection (as, for
each given kernel, its optimal prediction is the observed value).

■ All kernels observed runtime/energy (right, dark bars) represents
the relative error between the sum of all kernels’ observed run-
time/energy and the observed network runtime/energy. Compar-
ing between the selected kernels baseline and this one illustrates
the impact of selecting only a subset of the kernels. A big differ-
ence would indicate that there are left-out kernels that should
have been included in our modeling effort.

The data points in Fig. 4 were collected from two boards at three
different frequency configurations: low 3, mid, and highest frequen-
cies selected to cover the frequency ranges of the three components
(CPU, GPU, and memory controller). There are a number of take-
aways: (i) overall, with the exception of ShuffleNetV2 (discussed in

3Unlike in §3, where for the lowest frequency configuration, the CPU, GPU and memory
controller are all set to the lowest possible values, here the CPU is set to a slightly
higher frequency than the minimum. The reason is that at the lowest possible CPU
frequencies the GPU is underutilized: at these frequencies, the runtime is bottlenecked
by the time spent on the CPU preparing for kernel launches, and performing driver
related activities while the GPU is idle. A key assumption in our methodology is that
the GPU resources are adequately utilized, as such, we measure the time spent by the
GPU kernel activity and use it as the runtime of the kernels. Hence, any violation of
this assumption (such as the behaviour at the lowest CPU frequencies) would require
modifying our measurement techniques to account for this overhead as well. This
is similar to ShuffleNetV2’s behaviour highlighted in §3.2 (though limited to a few
frequency configurations unlike for ShuffleNetV2) .
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Figure 4: Prediction accuracy for our kernel-level models (grey boxplots) and two baselines: selected kernels’ observations (white), and all ker-
nels’ observations (black). The x-axis shows the 10 CNNs. The y-axis shows the relative error compared to the observed end-to-end network in-
ference time (top) and energy consumption (bottom). ShuffleNetV2 is separated for better legibility (please see the footnote for ShuffleNetV2’s
peculiar behaviour). The boxplots are created similar to the previous ones but with outliers represented as black diamonds.

Table 6: Accuracy of our network-level runtime predictions.

Network 5% 10% 15% 20% RMSE (ms) MAE (ms)
Alexnet 59.11 92.76 94.86 96.90 1.03 0.82
Densenet 75.33 90.38 93.92 96.48 12.82 8.72
GoogeLeNet 8.43 40.41 52.17 60.19 8.87 6.39
Inception3 24.33 85.49 88.79 91.62 9.50 7.12
Mnasnet 5.73 10.97 16.46 37.08 5.56 4.37
MobileNetV2 8.98 49.19 63.22 67.16 5.01 3.24
Resnet 24.60 60.38 79.60 87.08 3.28 2.45
ShuffleNetV2 3.03 6.56 15.81 21.78 11.48 8.71
Squeezenet 62.73 77.63 80.76 83.87 1.89 1.07
VGG 90.95 93.05 94.90 96.10 4.33 2.82
Mean 36.32 60.68 68.05 73.83 6.38 4.57

Table 7: Accuracy of our network-level energy predictions.

Network 5% 10% 15% 20% RMSE (J) MAE (J)
Alexnet 52.43 87.35 97.51 99.54 0.01 0.01
Densenet 46.79 78.59 91.19 97.52 0.13 0.09
GoogeLeNet 19.75 38.41 55.59 68.76 0.04 0.03
Inception3 31.40 61.00 83.33 94.06 0.08 0.05
Mnasnet 6.67 13.35 23.65 35.84 0.03 0.02
MobileNetV2 20.56 41.56 59.41 70.30 0.02 0.02
Resnet 22.59 45.89 68.52 83.19 0.03 0.02
ShuffleNetV2 5.57 12.41 19.00 25.94 0.04 0.03
Squeezenet 45.57 73.73 85.48 90.43 0.01 0.01
VGG 49.86 82.94 93.87 95.83 0.09 0.06
Mean 30.12 53.52 67.76 76.14 0.05 0.03

the footnote), the predictions are accurate; (ii) prediction errors do
not compose: for all networks, our predictions made by summing
up kernel-level predictions are close to the sum of observed kernel
behaviour and many errors cancel out during summation; (iii) with
the exception of MobileNetV2, modeling just the selected kernels
is a good approximation for the aggregate behaviour that includes
all kernels (as §3.2 suggests).

While Fig. 4 focuses on comparing with the baselines constructed
by aggregating observed kernel runtime/energy (for three specific

frequency configurations only), Tables 6 and 7 summarize the
network-level prediction quality for 3,150 frequency configurations.
The key takeaway is that predictions are relatively accurate across
thewhole range of frequency configurations; a range implying more
than one order of magnitude variation in runtime or energy. For
runtime 60.7% of the predictions have relative error better than
10%; (and 73.8% of the predictions have error lower than 20%). For
energy 55.3% of the predictions have relative error better than 10%;
(and 77.3% of the predictions error lower than 20%). Finally, the
fact that RSME is relatively low suggests that the worst prediction
errors are low as well.

6.3 The ’cost’ of generality.

Modeling at the kernel level enables generality, that is, making
predictions for any CNNwhose runtime/energy is dominated by the
same set of kernels. To quantify the impact of this methodological
decision, we compare it against a specialized approach that models
the runtime/energy at the network-level for each individual CNN.

We follow the same training procedure described in §4.3. For
each network, on each board (13 boards in total out of which two are
reserved for testing), we collect runtime and power measurement
samples for 3K frequency configurations, and use the median of these
samples as the target labels during training and testing.

Fig. 5 shows boxplots presenting the distribution of the relative
error for both modeling approaches (i.e., generic - at the kernel
level, and specialized - at the network level). On average, across all
CNNs and all frequency configurations, the network-level modeling
approach has lower (better) average relative errors of 3.64% for
runtime (4.94% for energy). In contrast, the kernel-level models,
have average errors of 15.4% and 14.71% respectively. In absolute
terms, adopting a kernel-level modeling approach leads to a ’cost’
of increasing the average prediction error by 11.76% for runtime
(and 10.22% for energy) but enables a generic prediction engine that
can be used to deploy new CNNs without the need to re-train for
each network. Whether this cost is acceptable or not would depend
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Figure 5: Evaluating the ’cost’ of generality. Prediction accuracy
comparison between two different network-level modeling ap-
proaches: our generic approach aggregating kernel-level models
(grey boxplots on the left), and a conventional approach creating a
specialized independentmodel for each network (white boxplots on
the right). The y-axis show the relative prediction error percentage
𝑅𝐸 for the runtime (top), and energy consumption (bottom). The
boxplots are constructed similar to previous ones (showing quar-
tiles and deciles, with the outliers represented as black diamonds).

on the specific usage scenario (e.g., in situations that explore a large
numbers of CNN designs to meet runtime/energy constraints[6, 52]
while maximizing accuracy this is likely the only feasible solution
as it would be too costly to train models for each independent CNN
design considered).

6.4 The impact of considering variability
We conduct an experiment to highlight the impact of taking vari-
ability into account. We compare the quality of predictions made
by a model trained on data collected from a single board (i.e., the
typically used approach: train on node A and deploy on node B)
against a model trained on data gathered from multiple boards and
tested on an an unseen node (i.e., our proposed approach). We note
that most related work (§8) do not take variability into account
during both the model development and evaluation phases, where
an even less realistic approach is usually used (i.e., train on node
A and evaluate on the same node A). This is independent of the
underlying modeling choice (e.g., linear regression, decision trees,
or neural networks).

On each board, we collect end-to-end inference time and average
power (100 observation measurement samples) for each of the 10
CNNs for ≈3K frequency configurations. We train a single model per
network as described in §4.3. For our methodology, we: (i) use data
collected on 13 boards for training and (ii) compare with training
on data collected on one node only (and we rotate the training node
to obtain 13 predictors). In both cases, we test the quality of the

predictions on one remaining dedicated testing board (i.e., a 14𝑡ℎ
board, randomly chosen). Additionally, we change the testing board
once more randomly, and re-run all experiments for a total of 26
comparisons.

Table 8 shows the relative improvement (minimum and max-
imum values over the 26 comparisons) obtained by training on
multiple nodes compared to training on a single node for runtime
(left) and power (right). For runtime, on average, the multi-node
model improves the percentage of predictions with less than 5%
error by 6.7% and the RMSE andMAE by 9.5% and 7.2%, respectively.
We note that the rate of predictions with larger error percentages
(e.g., 20%) does not change much as this is higher than the observed
inter-node variability that our model incorporates.

For power the improvements are larger (as expected since inter-
node variability is larger as well §3.1): 31.9%, 13.6%, and 14.1%
for rate of predictions with better than 10% accuracy, RMSE and
MAE respectively. As expected the improvement is higher for the
networks where we observe higher inter-node variability (e.g., Shuf-
fleNetV2). We note the particularly large values for the maximum
improvement in the rate of predictions with high accuracy (less
than 5% error): this is evidence of the fact that a "train on A deploy
on B" methodology will generate models that will be particularly
inefficient on this success metric on some deployments.

6.5 Training and inference costs.
Training cost. Across the 16 models we developed (two for each
of the eight kernels), on a server machine with 2x Intel Xeon E5-
2670 v2 (Ivy Bridge) processors, each with 10 cores @ 2.5GHz, the
training time min/median/max values are 3.9/4.9/71.2 hours for the
runtime models, and 0.8/1.5/5.9 hours for the power models. These
relatively low training costs indicate that we have satisfied our last
success metric (i.e., training cost is not onerous).

Inference cost. Fig. 6 shows the relative overhead - that is, the ratio
between the time consumed to make a single prediction (on the
ARM CPU of the Jetson AGX), and the predicted runtime (on the
on-board GPU). We make predictions for 1,000 randomly generated
configurations (i.e., frequencies and parameters) on a per-kernel
basis. Then, we construct the boxplots in Fig. 6 to summarize the
relative overhead values. There are three key observations from the
figure: (i) the overhead for the power models is much lower than
for the runtime models (due to the lower number of boosting trees
in the power models); (ii) some kernels (e.g., Add and Adaptive-
Pool2D) have a high relative overhead due to their low intrinsic
computational costs compared to running a complex tree-based
model to make predictions; and (iii) the relative overhead values for
the majority of the kernels vary over a wide range. This is because
while the cost to make a prediction is almost constant, the predicted
runtime is dependent on the frequency configuration.

While Fig. 6 indicates a relatively sizeable inference cost, we
note that it can be significantly accelerated. Compiling the models
to optimized low-level C libraries [51] is reported to give an over
6× acceleration. One technique we experimented with is group-
ing prediction in batches as this amortizes some of the prediction
overheads. Fig. 7 shows the normalized runtime (batch prediction
time divided by the batch size) for the four models with the high-
est relative overhead. The results indicate more than one order of
magnitude reduction in the overhead at batch size of 20, and up to
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Table 8: Relative improvement (%) in the quality of predictions obtained by taking inter-node variability into account. The tables presents
the minimum and the maximum values for the relative improvement observed for runtime (left) and power (right).

Network Improvement (Min (%)→Max (%)) – RUNTIME
5% 10% RMSE (ms) MAE (ms)

Alexnet 0.6 → 8.9 -0.0 → 1.9 2.2 → 61.0 -1.1→ 35.6
Densenet -4.6 → 8.3 -0.8 → 3.4 -0.8 → 9.5 -4.6→ 10.4
GoogeLeNet -4.9 → 49.8 -0.6 → 18.0 -4.2 → 86.4 -6.7→ 65.5
Inception3 -1.7 → 12.9 -0.1 → 3.5 7.6 → 14.7 0.4 → 11.6
Mnasnet -5.6 → 31.3 -1.0 → 7.9 -2.2 → 84.5 -10.8 → 62.1
MobileNetV2 -11.5 → 39.8 -1.7 → 9.5 -2.9 → 82.9 -10.1 → 58.9
Resnet -4.8 → 69.7 -1.1 → 71.2 -0.3 → 82.3 -4.3→ 68.0
ShuffleNetV2 -12.6 → 186.3 -1.7 → 13.1 -3.8 → 91.4 -19.0 → 75.7
Squeezenet -0.5 → 16.3 0.7 → 10.6 -0.1 → 78.3 -0.3→ 51.1
Mean -5.1 → 47.0 -0.7 → 15.5 -0.5 → 65.7 -6.3→ 48.8

Network Improvement (Min (%) →Max (%)) – POWER
5% 10% RMSE (W) MAE (W)

Alexnet -27.3 → 1,268.0 -3.2 → 80.9 -82.7 → 52.6 -98.3 → 55.2
Densenet -19.6 → 442.4 -4.4 → 78.4 -51.1 → 47.2 -51.9 → 50.9
GoogeLeNet -24.2 → 1,006.1 -2.9→ 162.2 -104.4 → 57.2 -101.8→ 62.2
Inception3 -25.5 → 465.6 -5.6 → 99.4 -56.7 → 45.2 -50.7 → 52.9
Mnasnet -22.6 → 1,894.3 -6.0→ 145.2 -67.5 → 55.6 -69.6 → 60.9
MobileNetV2 -14.8 → 1,207.4 -3.5→ 140.4 -53.8 → 59.1 -41.2 → 65.0
Resnet -28.9 → 468.0 -8.1→ 107.0 -72.5 → 43.8 -74.6 → 50.2
ShuffleNetV2 -39.6 → 113,950.0 -9.0→ 755.6 -70.3 → 66.2 -77.7 → 71.0
Squeezenet -27.1 → 582.4 -5.0 → 95.0 -48.6 → 46.1 -42.9 → 56.0
Mean -25.5→ 1,3476.0 -5.3→ 184.9 -67.5 → 52.5 -67.6 → 58.3

Figure 6: Relative inference overhead for kernel-level models. The
y-axis represents the relative overhead (i.e., the ratio between the
time it takes to obtain a prediction using the model and the pre-
dicted kernel runtime.

Figure 7: Batch size impact on the models’ prediction performance.
The x-axis shows the batch size and the y-axis (log scale) shows the
prediction time (ms) normalized to the batch size.

two orders of magnitude at 100 batch size.
The key takeaway is that several techniques are available to

reduce the runtime cost of the models such that they can be used in
an online adaptation scenario which is the second success criteria.

7 Discussion
We discuss several interrelated topics:

Generality of ourmodeling approach.While themodels we developed
and evaluated (in §6.1 and §6.2) are specific to the AGX platform,
our modeling methodology (§4) is generic and applicable to other
platforms as it does not use any platform-specific information or
insight. We model the runtime (and power) for the most widely
used kernels (in deep-learning workloads, using only the input
shape and kernel parameters; hence, one can simply apply our

methodology on a different target platform by collecting runtime
(and power) measurements at different frequency configurations
on that target platform, using the same kernel-level information,
and then re-train the models.

Variability characterization in edge computing environments. We
stress that previous work for characterizing inter-node variability
and, for identifying its sources (e.g., manufacturing process, hard-
ware aging, software-level interference, etc.) exists in HPC, Cloud,
and mobile environments (§8). Yet, variability remains widely ig-
nored in Edge computing environments. This paper sheds light
on this problem and presents, to the best of our knowledge, a first
attempt to systematically study variability on Edge computing
devices, and how to address it using a simple technique in the
modeling context. We believe that our approach for variability char-
acterization is generally applicable and can be extended to other
computing environments, but that remains out of the scope of this
paper.

Profiling techniques are important yet often overlooked. To the best
of our knowledge, there is no standard for profiling runtime and
power consumption on recent hardware such as the Jetson AGX.
This leads to an often overlooked problem: a fragmentation in the
profiling techniques that target the same platform.

For example, to estimate the runtime of heterogeneous applica-
tions that run on CPUs and GPUs, there are several decisions to
be made such as: (i) whether to include memory copying to/from
the GPU, and the CUDA synchronization calls when measuring the
GPU kernels’ runtime along with their CPU launching overhead,
(ii) whether it is practical to leverage the available NVIDIA tools
solely (e.g., NVPROF) to measure the CUDA kernels’ runtime on
the GPU, and (iii) how many timing and warm up iterations to
run, whether to report the average or the median of the collected
observations, and which one to use as a representative value for
the measured runtimes, etc.

At the same time there are factors beyond the developer con-
trol such as the precision, accuracy, and overhead of the measure-
ment tools (e.g., CUDA events, CPU clock, timing libraries, inter-
nal/external power sensors). These factors affect the reproducibility
of prior work, and from our experience, they have a large impact on
the quality and reliability of a prediction engine. As we describe in
§5.2, we went to great lengths to ensure the accuracy of our timing
measurements for example, by using CUDA events.
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The manifestations of inter-node variability are non-uniform. §3.1
highlights the magnitude of inter-node variability and compares
it to intra-node variability. An important lesson is that inter-node
variability does not follow a predictable trend across all networks.
We believe this is a consequence of two factors: (i) different CNNs
stress different system resources (e.g., CPU, GPU, and memory),
and (ii) inter-node variability is not uniform across those nodes’
resources. In other words, inter-node variability is a 2D problem (i.e.,
parametrized by the nodes’ resources and the application workload),
which makes it more challenging to deal with it.

Trade-offs: models’ accuracy versus their inference and training costs.
As detailed in §4.3, there are several hyperparameters that control
the complexity of the models (e.g., number of estimators, tree depth,
etc.). More complex models may lead to higher accuracy but at the
cost of larger memory footprints and slower inference rates. Hence,
there is a trade-off between the runtime overhead of the models
and the target accuracy. Similarly, during the hyperparameter tun-
ing phase, one specifies the number of tuning iterations used to
search for the best hyperparameters. A larger number of iterations
increases the probability that a better set of hyperparameters is
found; however, it increases the training time for a fixed resource
limit (same allocated training cores/machines). One consequence of
these observations is that, while we have met our success criteria
(§1), one can tune the models’ accuracy and overhead to meet other
modified criteria suited for a different deployment scenario.

Lowest CPU frequencies lead to degraded energy efficiency.While the
Jetson AGX features 29 different CPU frequencies, we find that the
lowest CPU frequencies are usually particularly inefficient in terms
of overall energy efficiency for heterogeneous applications. The
reason is that in these applications the CPU drives the workload on
the other accelerators (e.g., GPU, DL, PVA), hence, it is essential that
the CPU does not become the bottleneck where the accelerators
are idle / underutilized waiting for work to be scheduled on their
queues. This issue was apparent in §6.5 and afterwards, we ignore
the first few (lowest) CPU frequencies.

8 Related work
This section discusses the most relevant studies that relate to this
work. We note that none of the studies we are aware of takes into
account inter-node variability: almost all studies train models and
test them on the same board (rarely on the same set of boards, yet
without differentiating between a training and test set).

Modeling and characterization. Bouzidi et al. [9] propose a
network-level modeling approach for predicting CNN inference
runtime. Their objective is to develop a runtime prediction tool that
allows developers to choose the optimal CNN given a specific edge
platform architecture. The study focuses solely on runtime. The
key novelty relates to feature engineering: the study demonstrates
that a small number of features (e.g., generated FLOPS rate, number
of convolution layers, neurons and weights, input sizes, etc.) is
sufficient to build a model that can be used on unseen CNNs (once
the deployment space has been characterized). The key differences
from our approach are: (i) a different motivating scenario; and (ii)
different modeling granularity (network-level as opposed to kernel-
level); and (iii) the authors do not attempt to predict the metrics of
interest for different frequency configurations.

Lu et al. [31, 32] study CNNs’ resource requirements (e.g., run-
time, memory, and power) on mobile devices. They characterize
the CNNs at layer-level granularity and develop a model to pre-
dict the CNNs’ core computational resource requirements. Then,
they combine the characterization and model to build a prediction
tool Augur, that takes as input a CNN description, and predicts its
runtime, memory and power consumption. There are two key differ-
ences between their approach and ours. Firstly for the deployment,
limited layer selection, and CNNs the authors study, matrix multiply
is the dominant core computation. Thus, their approach relies on
modeling matrix multiply computation to estimate the layer-level
performance. While this approach simplifies the modeling phase, it
has two shortcomings: (i) in cases where the network computations
are not bottlenecked by matrix multiplication, their approach leads
to inaccurate approximation (e.g., 35% and 45% on the CPU and
GPU for GoogLeNet’s runtime); (ii), modeling only matrix multi-
plication is insufficient for other networks (e.g., SqueezeNet), that
frequently call other kernels. Secondly, in the most recent version
of Augur [32], the system’s frequencies are fixed at the maximum
values for better performance predictability, and hence, the mod-
eled space is reduced by a factor of 3,600X (i.e., number of frequency
configuration) on the Jetson AGX.

Davis et al. [15] are the closest project to our work from the
perspective of considering variability: they highlight inter-node
variability impact on building power models based on hardware
counters in large-scale homogeneous clusters. They note the vari-
ability among the multiple nodes of a cluster and propose a similar
approach to ours (i.e., sampling training data from multiple clus-
ter nodes) to account for variability while building power models.
Apart from the different models being built, there are a number of
other differences compared to our work: (i) three of the four plat-
forms studied had the DVFS governor running on default system
policy (i.e., DVFS configuration is dynamically changed depending
on the underlying resources utilization level), which means that
the dynamic frequency selection contributed to the observed vari-
ability, (ii) the experimental setup relied on the CPU solely (i.e.,
leading to a much smaller DVFS configuration space compared to
the Jetson AGX), (iii) the power models are developed based on
low-level features (i.e., performance counters) collected during ap-
plications runtime, and (iv) less emphasis is put towards controlling
potential sources of variability (e.g., DVFS settings, dynamic power
management, concurrent applications, ambient temperature, etc.).

End-to-end optimization solutions. Wan et al. [52] present
Alert, a runtime scheduler that relies on a feedback-based controller
and probabilistic model to select a DNN and the frequency config-
urations of the system’s resources. The goal is to achieve specific
latency, accuracy, and energy objectives. Alert presents a cross-
stack approach to adaptation, in which it combines DNN selection
(determines the accuracy) with system tuning (frequency selection)
to meet the QoS objectives. Alert addresses runtime variability on
the same device (intra-node) that occurs due to different inputs,
concurrent activity, and power management.

Baruah et al. [5] propose Airavat, a framework that manages
the frequency configuration on heterogeneous embedded devices
(they experiment on Jetson TX1). The main objective is to minimize
energy consumption (by optimizing for energy-delay product). Pre-
diction models are trained offline employing a Random Forest (RF)
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model. Developing these models requires three key steps: (i) col-
lecting a large set of representative applications, (ii) profiling these
applications, at different frequency configurations, using low-level
performance counters to measure and collect metrics of interest
(e.g., L1 miss rate, Memory Access, Cycles Per Instruction), and (iii)
identifying the settings that result in the lowest EDP. In addition to
the offline trained models, they propose an online tuning layer that
combines runtime performance counters and utilization metrics to
fine-tune the frequency scaling.

9 Summary and Future work
We explored the feasibility of building a robust engine for predicting
the runtime and power/energy consumption of CNN inference
workloads executed on the Jetson AGX. The modeling approach we
propose is unique as a result of two methodological decisions both
targeted to address the challenges of realistic deployment scenarios:
■ First, we take into account the variability among nominally iden-
tical edge platforms. This has two advantages: (i) it improves the
average quality of our predictions; and ( ii) when the model is
deployed across multiple nodes, it reduces the variability in the
quality of its predictions. (§3.1, §6.4)

■ Second, while for DNNs, modeling at the network and layer-
level granularity have been used before, we show the feasibility
of a more fine-grained and flexible approach, i.e., modeling at
the kernel-level granularity. This allows us to develop a generic
prediction engine that can be used to make predictions for any
DNN (or layer) that is dominated by a small set of kernels. (§4.2,
§6.3)

The resulting models for runtime and power/energy have the prop-
erties we set out to obtain (§6). They are (i) effective - with average
relative predictions error of 15.4% for runtime (and 14.86% for en-
ergy) and low RMSE; (ii) efficient - indicating the ability to make
predictions at a fraction of the runtime cost (after optimizing the
Python code generated by XGBoost); (iii) generic - making it pos-
sible to deploy updated/new inference models (or using different
type of input data - e.g., changing image resolution) without model
retraining, and (iv) practical - with low training cost.

Future work. We plan to explore several research directions
moving forward:
■ First, extend the scope of the variability characterization. We plan
to include: (i) more edge device designs, and (ii) low-level bench-
marks (e.g., Rodinia [11]). The preliminary results from our early
experiments on the Jetson Nano edge platform and using bench-
marks from Rodinia are inline with our findings in this paper on
the AGX platform and using PyTorch deep-learning networks.

■ Second, investigate the likely sources of the observed variability. In
this context, we believe there are several sources worth exploring
(e.g., hardware, frequency choice, workload characteristics, OS
scheduling decisions, etc.).

■ Third - enhance runtime and power models’ accuracy and perfor-
mance. While the presented models met the success criteria we
defined earlier (§1), we believe there is room for improvement in
accuracy and overhead especially for some networks (e.g., Mnas-
Net). This can be achieved by: careful investigation of the sources
of models’ errors, sampling more data points, and exploring al-
ternative modeling techniques (e.g., deep neural networks).

■ Fourth - evaluating the impact of variability on an end-to-end con-
troller.Weplan to evaluate the impact of accounting for variability
on the performance of an end-to-end model-based frequency con-
troller. Traditionally, these controllers are based on prediction
models (or lookup tables) that are trained and tested on data
collected from the same node [5, 7, 8, 38, 53]. However, as we
show in §8, accounting for variability significantly improves the
models’ accuracy. Subsequently, this will impact the behavior of
a frequency controller that relies on predictions made by these
models to make runtime decisions.
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